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ABSTRACT

An engineering model is developed of the error contours encountered in

position fixing using synchronous time of arrival data. Normal distribution is
emphasized. Probabilities of fixes occurring within circles and ellipses are
determined using the natural oblique coordinates associsted with the measuring
system, Comparisons are made of three-observer and four-observer configuraticns.
Examples are provided and applications are discussed.
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I. INTRODUCTION

In general, any event generating a signal which is sharpiy defined in time, and
which is propagated with known velocity to three or more fixed observers, has a
spatial position which can be calculated. Conversely, from the reception at a single
point (observer) of three or more sharply defined time signals emanating from syn-
chronized fixed stations, a spatial position can be determined (i.e., LORAN).

The determination of the position fix is accomplished by ccmmunicating the
synchronous time of arrival (TOA) data to some corimon point of intelligence where
the lines of position and their intersection can be calculated.

The accuracy of calculations is, in general, directly proportional to the sharpness
of the time signature and the separation (in space) of the observers or the stations.

There have been numerous treatments (references 1, 2, 3, 4, 5, 6, and 7) of
the physical systems which provide measurements for calculating a position fix. Most
of these also discuss the mathematics of calculation of the fix, as well as the various
error factors encountered and their causes. Analyses of the impact of errors on the
spatial fix geometry has, however, for the most part been treated as incidental to
these other objectives.

Therefore, this effort was undertaken in response to an apparent need for the
derivation of a model of the geometric analysis of errors. The prime purpose was to
make this model thorough enough to explain the various factors and parameters and
provide derivations of all functions and quantities necessary for understanding and
using such ¢ model. In the following ~escriptisn of the method of attack, most of the
analyses and results obtained did not appear tc be available today, as indicated by
research of the references and many other sirailar documents.

Engineering s'mpliii:ations are used for greater insight, provided the end resuits
are not co' taminated by inore than 5% error. Following a review of the fundamentals,
a new tool of error geomzatry resuiting from a unifcrm or constant error density is
furnished as a means of making comparisons with other density functions. Calcula-
tions and curves are provided for the Quasi-Circular Error Probability (QCEP)
radius for all values of probability in addition to the usual probable error of o = 50%.
Determination is made of the Elliptical Error Probability (EEP) ellipse in terms of
the probability of error, ratio of (space to time) gradients of the base lines, and the
standard deviation of spatial displacement per base line. A comparison is then made
of QCEP's and EEP's.

Since both the QCEP and EEP analysis is performed for dependent (three observers)
and independent (four observers) lines of position, a2 comparison shows that, contrary
to intuition, the three observers emerge superior to four.

Derivation and application of elliptical transforms from a rectangular to an
oblique coordinate system is provided. Probabilistic/gecmetrical aspects of inter-
preting single data sets (versus the usual distribution cf large samples) are discussed.

"There is, in effect, a correction factor, which is derived, for the true divergence of

the oblique coordinate system about the fix pcint. Examples are also given of applying
this model including a possible deep space application.
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II. FUNDAMENTALS

The most fundamentel tool involved is the locus of points of a given time difference,
f.e., difference in distance from a fixed pair of observers. This locus, as shown in
Figure 1, is a hyperbola.

The mathematics involved In thig vital system component are quite simpie. K
the propagation from peint P to chservers A and B is in a straight line at a velocity
V, then, for a given hyperbola,

D, - Dy =v(t, - tp) = constant )

wher= t A and tp are the respective times of arrival (TOA's) measured to the same
(synchronous) reference, and the distances DA and DB are also straight-iine measure-
ments. )

I is important to note, for the sake of generalization, that we are not restricted
to any plane of action. Drawing the two hyperbolas in the plane of the paper wase
purely arbitrary. The total loci of points are the surfaces of revolution obtained by
revolving the hyperbolas, as shown in Figure 2, around the line A-B as an axis. K
we wish to confine our interest to aay particular surface, which suppose&dly contaius
the position fix, we may limit the loci to those of the lines of intersection of the
particular surface and of the hyperboloid of revoluticn. The major part of this report
is limited to a plane representation of the earth, or space, as such a particular
suriace.

I the psths of propagation are not straight lines, but have known radii of curva-
ture, the loci surfaces may still be defined and will, in general, be hyperbolic in
nature. For example, in the case of an assumed sphere such 28 the earth, the radius
of curvature is the radius of the earth and the propagation paths are (assumed) great
circles. The hyperbolic surfaces will, accordingly, have to be 1aodified. In effect,
they would be generated from a plane hyperbolic figure whose distances Dy and Dp
represent great circle arc distances instead of plane struight line distances.

While the development of this concept might be of considerable future benefit,
it is not an objective of this report. Suffice it to say that the change in the difference
of path lengths is not linear and is given by

A@D, ~Dy) = R(6, - 6,) - 2R(sin 02/2 - sin 6,/2) @)

where

R = radius of the earth

A"andD

91 and 9? represent the great circle distances of D B

i
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Figure 2. Basic Error Geometry (Three Cbservers)

e

A




LB D

or, perhaps more simply, starting with the originai hyperbolic lines, the constants
of difference would be obtained from

DA—D

B = R(G2 = 91) = constant @)
It can be shown that these modified hyperbolic surfaces will intersect the earth in
such a manner as to form civsed curves which are ellipses, if four observers form
two base lines which are conjugates of each other. The extension of such hyperbolas
into ellipses on a spherical surface has been noted by Dr. E.A. Lewis of AFCRL. 1

The various formulas which have been developed for the direct calculation of
position from two or more pairs of time differences are quite complicated. None of
these appears to offer the accuracy required for most applications. One of the most
promising methods currently in use to obtain accuracy is: obtair an approximation of
poaition using a relatively simple formula, calculate or look up the time difierences
which would occur if this were the true fix, and then compare these time differences
with the data sets. The resulting so-called space/time error could be reduced to as
small a value as desired by moving the position a small amount in an indicated direc-
tion and continuing iterations indefinitely. There is usually, however, a practical
limit to the number of such iterations allowable.

Unfortunately, the error encountered in this caiculation is not the only or worst
error. I is the TOA measurement itself which is more fundamental.

What are the error distributions and how do they affect system engineering and
total system accuracy? For a given timing error or timing error distribution,
calculate geometrical areas which contain the measured point with a given probability.

Figurcs 2 and 3 relate the basic elemerts of the geometry involved. For a first
order of accuracy and simplification of the model, it is assumed that we are dealing
only with the plane surface representation of the total hyperbolic loci and that the
propagations are straight lines in that plane.

The observers are A, B, C and A, B, C, D for the three- and four-observer
configurations, respectively. Also the lines AB, BC and AB, CD, respectively, are
the base lines of the three- and four-obaerver configurations.

The dashed curves represent the hyperbolas of a constant difference of time (or
distance) as measured by these observers, and selected to include the point P, The

lE. A. Lewis, Grometry and First-Order Error Statistics for Three- and Four-
Station Hyperbolic Fixes on a Sph:rical Earth, AFCRL-64-461, June 1964.
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asymptotes to these curves are represencea as the straight lines from the center cf
each bege line through the point P, thus introducing a small, negligible error in the
argles, Om n. The exact construction of the asymptote is accomplished as follows:

a. The base intercept of the hyperbola ie obtained from
2a = v (T, -Tp) 4)

b. A semicircle is drawn about each base line as a diameter, i.e., AB, BC,

c. A vertical line is erected from the base line <t uoint a to the semicircle
(Figure 2).

d. A line is drawn from the base line center to this vertical intercept of the
semicircle, and then extended out as the asymptote.

The concept of the base line error, €, is that the quantity tp - t3, will have
errors +At associated with it, also associated at the base line is a quantity, ¢,

given by
v At

€ = erommm—

2

¥, then, the asymptotes rm, Om and rn, Oy have associated with them the errors
A6y, A0 which result from errors €p, and €3, the crosshatched area would repre-
sent the area of uncertainty for given error limits. The equal division or statistical
centering of A0 about the true asymptotes is implied only for the sake of deriving

a correction factor (see Appendix K). K A6y, and A 6, represented error limits, the
crosshatched area would represent the area of uncertainty for those limits. In the
gections to follow, except for one portion which actually deals with such a hard
limited case, the size of §, and hence A0, is assumed to follow a normal probability
distribution. Another assumption made is that, for purposes of engineering accuracy,
the crosshatched area is a parallelogram bounded by four displaced hyperbolic LOP's
(lines of position).

In order to measure cr evaluate these LOP cisplacements, the oblique coordinate
system m, n is established at right angles to ry, and rp, respectively, since it is
assumed the LOP's are parallel to the respective rm or rp.

Comparing the use of this oblique coordinate system to the usual orthogonal,
rectaugular coordinate system is believed o be unique in that it appears to be the
first time that the complete analysis has been performed on the natural ccordinates
of the system. Secondly, it offers a certain advantage in eliminating the necessity
for understanding, defining, and computing, variances, standard deviation, correla-
tion coefficient, etc., required for the use of rectangular coordinates. Tc be more
analytic, assume tha® we are dealing with the rectanguiar coordinate system x, y
such that for a true fix point and given LOP displacements, for exemple m and n, we
would have,

n

<
i

mecesc O+n cot 6

»
]
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TRUE LOP

.

It then becomes necessary to establish a correlation coefficient between x and y. First
establish the variance in x and variance in y. For the case of in and n, independent of
each other, the situation is not too bad, with,

e

02=02 /

y N y

2 2 2 2 2
ox = ¢8C Bam + cot flon

and correiation coefficient pxy given by

COVix,y) _ E@y) - Ex) E(y)
oo o0
Xy X'y
which turns out to be
COT 6 orn

A -

Xy .
{csc2 90 2+cor? oo’
m n




Having determined these fundamental reciangular parameters, the next step of
comparison would be tu integrate the probability density expression

] exp |- X xi_zxypxy ,,_s'_;
0 0o
”cxcy /l-pxyf 2(1-pxy) Ox Xy oy _

over the area of interest. Setting the exponent equal to a ¢onstant, such as CZ,
results in the aresa being an ellipse with prcoability '

it

a = l1l-e
whkich agrees with the results obtained using the oblique system. =

At this point perhaps the most significant difference is in determining the size of
the ellipses for a given probability; the most significant advantage of the rectangular
coordinates is that examination of the equstion of the ellipse can provide the orienta-
tion and size of ellipse. By comparison, using oblique coordinates. a differential
max/min determination must be made to obtain the true spatial description of the
ellipses, '

Referring to the rectangular parameters, when the quantitics m and n are not
independent (three observers), the determination of variance x and the resulting
, are considerably more complicated, resulting in much more compliex expressions
for the ellipses.

By comparison, measurement and analysis in the oblique system virtually
eliminate the requirement for establishing these statistical parameters in the space
domain., As shown in this report, once the correlation factor of errors in the pairea
time differences (Atp and Aty,) is determined, and the density function, f(At,, Aty,),
is known the conversion to the spatial representatior fullows without further statistical
anslysis.

Before comparing the difficulties of determining a circular area which contains
the point with 2 probability o, a Quasi-Circular Error Probability (QCEP) is defined.
A circular area of rvadius, R, regardless of the coordinate system, oblique or other-
wise, which contzins the point in question with a probability a@ is determined. This
differs from the classical definition of CEP3 in two respects. First, values of R for
all values of @ from 0 to i are obtained, rather than the special case of @ = 0.5 only.
Second, . ates, whether x,y coordinates or m,n coordinates, are not equal nor
does R=v'mZ+n ; hence, there may or may rot be a Rayleigh function involved, so it
is 50% probable that R exceeds 1. 177 of some equivalent 0 . Nonetheless, a joint
probability function throughout a circle is integrated avnd the results are abbreviated
QCEP.

3B_eference Data for Radio Engineers, International Telephone and Telegraph
Corporation, 4th Edition.
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Contrary to calculations of the QCEP in the obiique system {Appendices C and D)
complication rather thax simplification results from utilizing a rectangular coordinate z

system, 3
In tae case of four observers, the rectangular coordinate system requires a
solution of $
R
- 2
a = fl(ax,ay, 8) [R{o[fz(n,ax,ay, Ox)] -b[f3(n,ax,ay,0x)]}exp[-f 4@ ,ax,ay,ex)]dn
where
£ = 1
L p
40 0 _¢/l-p
Xy Xy §
. 4
sn i
I, =33 * AR xi
_Dn
! f3 = 3a - AR
. D .2
f, = (A -—=)n
4 4A2
and
H A = - 2
20 0 (1-
T ; Oy -Py)
p
D = _-LZ—
Uxay(l-p )
£
g =0
y = % f
3
5 o =‘/CSCZB<72+COT20 o 2
X X m X Dn
. COT 0x o
Xy

V/cscze o 2+cor? 9 a?
X m A N

11
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whereas, in the oblique system, the ca'culation

. R 2
1 n
- J— . 4 - - dn
a < —2— [ o] ‘{vzl)exp[ 20,_]
n -R n

where
sin 0

b4 2

(noot9x+ Rz-n)

m

shh 0
v, = 2
Y2 o

m

(@ cot Bx = Rz-nz)'

For the case of three observers, the ratio of complexity of rectangular over
oblique systems iz considerably greater. Both systems will add a term to the &
functions, hut for the rectangular coordinates there is, in effect, a correlation
factor within a correlation factor, which modifies the parameters as follows

2 2 2 2 2
Ux = ¢8C Bx o, +cot 6 0" +csc Bx cot Bx 0.0

1

- 2 2
3 csc Gx 2.0 * cot Bx o,

Pry =

2

ov'_ 2 2 2
cse 8 0 “+cot”" 8 0 “+c8c B cotf 0 0O
n o x'm X n x X mn

whereas, for the oblique system, the functions are changed only by the addition of a

minus n/v3/2 0, term.

As shown in Appendix A, the angles which form the asymptotes tc the hyperbolas

are given by

0 - gl B

, = cos | ———
2C

0 1| Vs - tp)

m = €08 ——rar—
' 2C

®) -

(6)

For all points beyond a distance of one base line, these asymptotes are a very good

approximation to the hyperbolas themselves, e.g.,
e

L and rm> 2C

12
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I greater accuracy is required for fixes which are closer, either more precise
formulas must be used or solutjon by construction can be performed. The latter
may be performed by referring to a preconstructed system of hyperbolas, provided
the incremental steps in time differences per Lyperbola are fine enough. Paren -
thetically, and as & philosophic rationalizatica, it is stated that the utility of this
mode! is proportional in some manner to the range. That is, it is difficult to
visualize applications where ry or rpy, are less than 2C. One probably encounters
such things as: ‘'l can see the guy with my naked eye, "or, " K the person or the
event is that close to home, who needs a system to measure its lucation? "

Vhen 6y and 6, have been determined, these and the crossing angle 6k are
related by

_ 0

ex = 180 +0n-(¢+0m) 8)
where ¢ is the angle between the base lines. Perhaps the simplest way to determine
the distances rp and ryy is by construction on the piane representation of the base line
system.

If direct calculation is preferred, it may be obtained as follows:

In Figure 4, since the line d joining the centers of the fixed base lines is iixed,
the angles e and f are also fixed. Then using the law of sines

T r
S 0. = 5@ (9)
sin 6 sin (180-f-0 ) sin (0_ -e)
p 4 n m
sin (180-f-0 )
r =d —2 (10)
1L gin 8
X
sin (6_ -e)
r, = d —n (11)
gin@_ -
X

These relations are equally applicable to either the case of three observers sr four
observers. Thus we have performed either a calculation or graphical solution, or
combination, for all the geometric variables asscciated with a given set of fix data

Regarding accuracy in the use of plane geometry, using the spherical surface
of the earth, either a scaled sphere or globe or a plane map frojection of the earth
may ve used for the construction and measurement of the geometric factors. The
former is apt to be quite inconvenient. Concerning the latter, if the map were
distortionless, and straight lines drawn on the map were the true representation of
great circle segments of the giobe, then the base lines and asymptotes would be true,
and the plane model would be without error.
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Figure 4. Geometry of Angles Involved

Since a Lambert conformal conic projection contains a distance measurement
maximum error of about 1% to 2% for the ranges of concern herein, and since we are
for most cases utilizing the asymptotes as LOP's (lines of position), the errors
should be negligible, This is particularly true if the crossing angle, 6, is calculated
directly in terms of Lat.-Long. and spherical angles. An enabling factor is the axiom
that the tangent to the hyperbola at the point P bisects the angle subtended by the base
line, such as APB. Thus, if we are seeking a statistical analysis for some assumed
point, P, i. is relatively simple to establish the angle, 6) and 82 (see Figure 3) of
the true hyperbolas and then obtain b

Ox = 91+92+OBD

where, for three observers, fgp = 0

14




The details ard derivation of such quantities as n, m, 6y, 6, R and Fare
given in Appendix A. As seen in Figure A-1, determination of these quantities is
independent of the number of observers involved since we are dealing with only one
given pair of readings at a time. In resume, the formulas fcr these quantities

follow:

n="0LAt ;m=T_at ' (12)
6 - cog-lZ(B_TC)
n 2C (13)
R? - ; (m2 +1n% - 2mn cos Gx) (14)
sin Gx

where, in addition to the quantities previously defined, Aty is the net timing error
made by A and B after subtraction, and Aty, ie the error of B and C, or C and D.

l"n is a time to space gradient whose value is given by
r v

_ n
L= wcemy 49

0% is the crossing angle formed by the intersecting hyperbolas or their asymptotes.

R is the distance in the oblique axis system m, n to any point P' from the origin P.

C is the base lin~ radius or one-half of the base line.

This concludes the essential geometry of the fix system.
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III. DISCUSSION OF UNIFORM PROBABILITY OF ERROR GEOMETRY

The probability of committing an error of any magr.i‘ude has not yet been
mentioned. Of the many possible distributions of errors, this discussion shall be
limited to two:

1. Equal or uniform probability,
2. Normal distribution of errcr.

The first case will be dealt with rather briefly. While such a distribution may never
occur, its analysis has academic value if for no other reason than to provide a
comparison or check against results of the second case or, for that matter, any other
distribution. The details of this analysis are given in Appendix B. The important
_result to be noted is that for given limits of error of € the radius of a circie which
. would contain one-half of all the measured fixes, i.e., the QCEP (quasi-circular
error probability) is closely approximated by the following expressions:

CASE RADIUS R

2R< AS_< AS R = ¢/C /_ "n'm 16
n m / 3 27 sin 0 sin & sin 0 (16)

X n m

rn

A8 <2R<AS R = €/C ICshm fxsm gn (17)

p3 p3

€ rm rn

a8 < A3 < 2R R = 55 53— +t—3 (18)

sin“ 6

4 sin Bx sin 0m

The QCEP, for the cos exp & = 50%, means that there i: a 50% probability that
any one particular calculation using data which contains errsrs will produce a point P
which lies within this same circle. It can be seen from Figures 2 and 3, and from the
previous discussion, that there is nothing inherently natural abow* a circular area of
fix points. Infact, if a contiruous smooth curve of equal error probability were re-
quired to approximate this arca, it would be inclined to be an ellipse. The inherent
benef t of elliptical contours will be seen in the second case of normal distribution
of error. Meanwhile, we are faced with a necessity of at least being able to compute
QCEP’s in order to be compatible with other systems which cause the event P to occur,
where the probability of cause is inherently circular.

Since the second case of a normally distributed probebility of committing an
error € is believed to be more representative of this system, it will be treated in
considerably more detail. One example of a component of timing which may depart
from the normal distribution of variance is the velocity of propagation of the event.
Actually, throughout this study, the velocity is assumed to be constant, i.e., given
no distribution whatsoever. However, if the magnitude of variance, with different
paths, is significant, it is believed that its distribution is more apt to be Rayleigh
than normal.
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IV. DETERMINATION OF STANDARD DEVIATIONS OF LINES OF PGSITION
DISPLACEMENTS

—

This section discusses the determination of On and O, the standard deviations
of the statistical displacements of P' as measured along the axes, n, m.

The first step is to establish the probability density distribution of the timing i
errors for a pair of observer measurements. This is done in Appendix E.

The significant features are: {
!
If 0 = standard deviation of timing errors encountered at each observer 5
station
T A- exact true TOA at station A
Tg= exact true TOA at station B
i
The probability density function of timing errors at A and B are
[ty - T2
1 A A -
iy = oxp |- —5—— (19)
ovZn i 2c? |
S fEy) = - exp F— -—'————-(tB -4 20)
B o |
and the density function for the pair is
2
1 M-
fix) = exp |- 1AL 3
o Vom 20
X X
whers
X = tA'tB or tB-tC
M = TA“TB or TB-TC
¢ =V2c0
X

This also defines the important quantity Oy .

For convenience and reduction of terms, th2 quantity M-X and the quantities Atp
and Aty as used in Appendix A and elsewhere are the same. Thus, to clarify and
standardize nomenclature, the density functions for each pair are written

. ! Al
ta-tp) = ——ew|-=5 22)
X

B == TR SIS IR e
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or

exp

-

Referring again to Appendix A, and recalling that

therefore

y- It i8 ngain emphasized chat this e
" accuracy as the distances r
and 8y, approach 0° or 180°.

vr
n

L= "2'ch‘9’n

vy
m

l-'rn - 2C sin Bm

m

Consider the special value

)

{

giving the specisal value

[y

l"n At

l"mAt

n

m

(23)

(26)

27

ngineering simplification degrades rapidly in
n and ry become less than 2C and/or as the angles 6n

(28)

29)

Using standard notation for the normal density function for variations in the value of

2]
LU

202,
n 4

n gives

Substitution gives

f(n) =

20

(30)

31)




P

If ng is interpreted as that value of n which makes f(n) = 0.242/0, , i.e., the one
sigma value, then

r2e¢?-¢2 (32)
n X n
and we have the important relationships
o =T o (33)
n n x _
o =T 0 (34)

A formula which gives a closer approximation for valﬁes of rpor r;; < 2C is
obtained Zrom Dr. E.A. Lewis'®and 5. W, Sitterly *

T XV

- <l g — YV
U, B B, B, 0, B, B, (33a)
2 sin 2B 2 sin 2B,

\
where -

"TAB is the standard deviation »f the errors in time-difference measurement -
-made by stations A and B, " and is therefore equivalent to 0y . Bp and Bp are the
espective bearings of the lires AP and BP measured with respect to the true nurth
vector at P. Thus BA - BB is the base line angle APB subtended at P.

In fact, if we consider the earth spherical and can measure B, and
Bp more readily and/or accurataly than r and 8, this computation of Oy, and 0y
where

X UXV
On = B -8B (34a)
251!1-—32 =2

may be preferred to the gradient I,/ for

On/m = % 1-‘!11/m
used in this study.

Loran, MIT Radiation Laboratory Series, Vol 4, Mc Graw-Hill, New York, 1947.
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A more general proof of the validity of this concep: foilows. Using the probsbility
thecrem that if

we have

or

hence

but

80

and, if

v = f)
pv) = p)| 3]

n = f(At-n)

n = PnAtn
_ _n
at = $am) = r;

n
l"zAtnz
pAat) = —i— -2 —
b
(on/l"n}. o7 l_ 20
\ 2
B 1 [ Atn
p(At)) = exp | - —5—3
(on/l‘ on l_ 20 /I‘n_]
o
o - o)
x I,
22
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Pom pie. S SIS £ XS ¢ Pl

this becomes the identity

: at®
PlAL) = ——— exp | - —5 )
o Voir 2¢
X X
By symme‘ry
]
n
@“n
T
Another reiationship which introduces the *mportant parameter, 8, is
an I‘n ax I‘n
o x - D _g 42)
% Tmo I -
X
Further ¢ e, _ .
vr, o T J
r 2¢c sin @ r_ gin 6 .
n _ n_ n m @3)
rr-n Vim T, sin Gn _
2¢ gin Em
If g and h are the vertical components of ry and ry, onto the; bagé lines and if
I'n & 'y then fo:' a quick approximation
L)
o r » )
n n :
-6— = F_ = % = ﬁ (44)
m “m _

This approximation is valid for the geomeiry of both the three and four observére, and
should complete the iasic model of the system probability/gecmetry.
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V. DETERMINATION OF QUASI-CIRCULAR ERROR PROBABILITY FOR THE CASE
OF FOUR OBSERVERS

From Figures 2 aud 3, calculate the probability that a given set of time measure-
ments will result in a fix which is displaced from its true position P to P'. P' is
measnured in the oblique coordinate system m, n as the distance to the vertical
projections of P' on n and m. This is alsc representative of the displacements of
the hyperbolic LOP's from the true LOP's.

At this point the QCEP analysis must separate into tv:o branches; as will be
shown, there is significant difference between the probabilities, and hence radii,
for the case of four versus three observers.

The case of four observers is treated first because of the simplification that the
paired differences of time readings are independent of each other, wh2rezsa such is
not the case for three observations.

If p(n) and p(m) represent the respective probabilities of displacements of mag- b
‘ nitude n and m, and if the environment and readings of A and B are entirely independ-
ent of C and D, then
fa, m) = f{) Xf(m) (45)

Also, for normal probability density distribution, we may utilize from standard
probability notation, tirz following:

p 2 ‘1
1 n
f(n) = exp | - 5 (46)
on\/'é'ﬂ 20
- -
q 2
f(m) = expl - 2 5 47)
o271 20
! B i
or,
f SYN S n’_, m’ 48
: o m on 0m211 P 20 2 20 2 “9)
n m

The associated probabilities for incremental regions &n and Am then become

il .\ e

2
pn) = 1 exp ——9-2- An 49)
o J2r 20
n n
! 2 %
pim) = —— exp| -2 |Am (50
] o _Vim 20 >
m -
:
25 3
%
8

e ——— T T E——— - S———— - —




Consider now the region A (which shall become a circle) and all the various combina-
tions of anique points n, m and their probabilities of occurrence. Since these 2re
mutually exclusive events, the total (collectively exhaustive) ; robability for the

region A is given by

a = ), 7 fe) Xf(m) Am Ao 61)

m I

or, by well-known use of the integral calculus for the continuous case,

For the special (QCEP) case of the 1region A bounded by a circle of radius R

R f2(0) 2 2
am e [ ) o R e EC
-R { (n) n %m
where
f,n) = ncce Bx - Vnz-nz sin ex (54)

2
£,@) = ncos 6 +¢R2-n stn §_ (55)

A close approximation for small values of R sin 6; was found to be

2 2!
f, @ f, ()
- m— f[f @)-f (n)]{ [ z]*exp[--g“r]}
m 20

2 (56)
|27 -
20

o

a

A more exact expression developed in Appendix C, which is goed for all 9 up tn the
practical limit of 909, is given by

1
2EV2TK

R
]

+1 2
(¢, &) - &_x) exp[- X ] dx 7
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where

¢.&) =
V2K
&, ) = @{sine
vVZK

é{sme (x cot 0+J1-x§)=

(xcotO-Jl-x)}

4 ST IIN

(8)

©9)

and the symmetry of results is such that solutior.s can be miide in terma of that
variable whose standard deviation is the greater. The tabulited results foilow,

NOTATION AND VALUES OF G CEP VARIABRLES

TABLE I

i
e > o o > o
X = /R m/R
B = on/om am/an
K = o %R o %/R

Figure 5 represcnts the results of the use of these equations to determine the
circle R versus the required probability, o . The line drawn through the curves at
o = 50% gives the required velues of R, in terms of On or Cp,, for the specia! QCEP

equivalency case.

Note that B, 6n, and 6% appear related in some complex manner. K this is true,
one of the parameters B or 6; could possibly be eliminated thereby reducing the
number of curves necessary to describe the system under these coaditicns. The
fact, however, that B and 6y are not entirely independent of each other does not in-
Values for these curves wore computed on the
CDC 1604B computer. Both formulas were used for small values of R sin 6 with
very good result comparison. To cbtain values of the error functions for #; and ®g2,
a program was successfully written based on the infinite series given in Jahnke and
Emde which resulted in gsod or better accuracy than the values in their table,

validate their use as parameters.
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V1. DETERMINATION OF THE QCEP FOR THE CASE OF THREE OBSERVERS

Comnere the case of four observers with that ¢f the three obgervers in Figure 2
where, in effect, observers B and D arve merged into one. The sitaation with respect
to the independence of pairs :'cf’ time differences iz now changed; they are no longer
independent. In terms of a cuefficient of correlation, or correlation factor, consider
two theoretical extremes to help visualize the situation. First consider B to be
errorless, with all of the Gaussian distributed errors committed at A and C, This
would again represent an independent situation or cne of zero correlation factor,

Next consider A and C to be errorless, and assume a!l of the errors to be committed
by B. This would represent a one-to-one dependency with a correlation factor of
one. The fact that the three observers create errors with equel distribution makes
the actual correlation coefficient of 0.5 seem intuitively feasible., The prouf of

p = 0.5 is given in Appendix J.

Also from Appendix J (Equai'tion J-32), the joint probabiiity density function in
the time domain is giver by

2 2
AT, 2 +AT, 2 - AT,, AT
f(ATy, ATy) = —— exp| -2/3—F o M_NI o)
o V3 o

For comparison in the space domain with the case of four observers, make the
following conversion. K increm: ats in the space domain are related to increments
in the time domain by a constant, then

f@,m) dAg = £(At , At )dA,

where dAg and dA¢ are the respective two-dimersionsl increments. The constants
referred to are:

_n _dn
My =y » 48Ty =y
n n
dm

ar, =& . dar,, =
M T, M

Then

S &
e g
Sog
%
z'-i
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sud by substitution intc Equstion (60):

r‘nr‘m 2 n2 m2 nm
f@,mydA, = ———— exp|-3 ¢ -
8 o0 73 A\r2y r¢e?2 r r o

n m \ X m x m x
dm dn
rﬂl rn

or
2 nz m2 nm
f@,m) = — exp |l-5|l—5 +—5 -5 (€1)
o wVv3 3\c? ¢° % %m
nm n m

is the probability density function in the space domain, comparable to equation (48)
for the case of four observers., Further, in comparison, the results of Appendix D are
as follows:

+1

) :
1 X
a = —— [e.0) -2 (x)]exp[-———] dx (62)
BVEK fl e 2Kp”
However, .
sin
¢ ) - Jf—_kx cot 6 +¥ 1 -xz)-—x——] (63)
V372K 28v372K
sin 0
%, (x) = x_[(xcot@- 1-x2)-———’i—] (64)
V372K 28V37/2K

and the symmetry prevails such that the conditions and values of Table I apply directly
tc this analysis.

Figure 6 presents the results of these equations to determine the circle R versus
the required probability ¢ .

Referring to the curves of both Figures 5 and 6, the abscissae are K and 0,
where Og represents Oy, if 0n/0m > 1 and also represerts 0y if 0y,/0n > 1, provided
either ratio is equal to the value of the 8 for the curves.
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VII, COMPARISON OF RESULTS OF FOUR OBSERVERS WITH THREE OBSERVERS

A comperison will now be made of three to four observers! If the cor-
responding £ curves of probability for four chservers are placed on top of the curves
for three observers, there is a nearly constant shift of the former to the left or to
greater radii. Table II gives a spectrum sampling and comparison of values through-
out the systems of curves. A fairly constant ratio of R4/R3 is obtained for a given 8 .
The averages decrease with increased B with some indication of approaching 1.0
as B—+ o , No effort was made to deduce or prove this theory.

TABLE 11
COMPARISON OF QCEP RADII FOR THREE AND FOUR OBSERVERS
QCEP RADIUS RATIO
Four Three
B Bx Observers Observers R 4/ RS Average
1° 52, 38.8 1.3
2° 26.4 20,0 1.32
1 4° 13.4 9,75 1.37 1,32
8° 6.86 5.00 1,37
16° 3.56 2,65 1,34
32° 1.S 1,58 1.20
1° 83.6 67.8 1.23
2° 41,8 33.2 1.26
2 4° 21,4 16,7 1.28 1.25
8° 10,8 8.50 1.27
16° 5,48 4,36 1.26
32° 2.93 2,49 1.18
- 1° —e e .
2° 54,8 50,0 1,10
3 4° 29,2 25,3 1,15 1,13
8° 14, 65 12.8 1,14
16° 7.22 6.48 1,12
32° 4,0 3,54 1,12
1° — ——— ——
2° —— —— —
4 4° 39.1 35,4 1,10
8° 20,9 17.6 1,14 1.12
16° 10,0 8,85 1,13
32° 5,25 4,75 1,10
1° ———— c——— ———
o° ——— ——— ——
5 4° ——— —— ——
8° 24,7 22,1 1,12
16° 12,4 11,2 1.10 1,11
52° 6.5 5.9 1,10
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VIIl, COMPARISON OF QCEP's TO THE UNIFORM PROBABILITY OF ERROR

Another interesting comparison results with reference to Equatious (16), (17),
and (18), While these referred to a somewhat academic situation of uniform or equal’
probability of error magnitude, the following analysis indicaies that these formulas
may have more value than passing academic interest.

Since in Equations (16), (17), and (18) the value of € is indeterminzate, or at least
somewhat arbitrary, a very feasible value to assign would be that derived from a
timing error equal to the standard deviation of Gausslan timing errors. Thus,
assuming

€ =vO0O (65)

immediately forms a common bond between the two systems of measure. To continue
this translation in Equation (16)

vQo T T
C 2mn sin & sin ¥ _ sin ¥
n m X

9 vr o, v rn
= X X
Vi 7 *2Csm ¥, % “ZCem o, % (66)
= 2 " oo
7 sin Bx m x n X
R = 2 o O 67
7 sin yx m n (67)
Also, using
om =B on

2 ,
SR on‘ FE%UX[R <0,< om] (68)

Similar!y, translation of Equation (17) gives

y o,,
| R = s=ino~ [°n<R<°m] (69)

X
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and for Equation (18)

o
R = —‘3‘/—_-_2—_3 +4 [0 <0 _<R (70)
2 23m26x [n m ]

These formulas are also adjusted to the condition, a requirement for consistency, that,

om > On
Doing this makes it possiblz to look up QCEP's from Figures 5 and 6 for the same

Bk and B as used in the above equations. This was done for the set of points 6y, 8
given in Table III, Since reading the curves of Figure 5() and Figure 6{; ahove 32°
results in significant inaccuracies and since formulas (16), (17), and (18) incorpcrate
approximaticns, the final tabulated reauits should be viewed with a grain of salt.
However, looking at the ratio of QCEP's of three Gaussian observers to the hard
limited equal probability error makers (R3G/Ru) there {s a strong indication that for
rapid calculation the use of

R3G = 1.8 Ru

would give figures within 10% error. Ry would have to be calculated in accordance
with Equations (68), (69), and (70). Another relationship resulting from the sbove
substitutions is

AS = 20
) {1 n
AS =20
m m

The criteria for the use of Equations (68), (6S), or (70} have been added in terms of
Op and Oy, as shown,
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TABLE II

COMPARISON OF QCiEP RADII FOR GAUSSIAN AND
UNIFORM ERROR DISTRIBUTION

QCEP RADIUS (0, = 1 Mi.)
RU Gaussian RG RATIO
Four Three

Gx B Uniform Chserver | Observer | Eguation R3G/ Ry
2° 1 14.3 mi, 27.5 19.5 70 1.36
8° 1 3.7 mi, 6.8 5.0 70 1,35
40° 1 .99 mi, 1.6 1.38 68 1.38
64° 1 .84 mi, 1.15 1,14 68 1. 38
2° 3 43,0 mi. 57.0 51,0 70 .18
8° 3 10.7 mi. 15.4 13.0 70 1,22
40° 3 2.3 mi. 3.4 3.0 89 1.28
64° 3 1,67 mi. 2.5 2,32 69 1.40
2° 5 71.5 mi. 95,9 94,5 70 1,32
8° 5 18.1 mi, 24.5 22.3 70 1.23
40° 5 3.9 mi, 5.3 5.0 69 1.28
64° 5 2,78 mi. 4,0 3.76 69 1.35
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IX., AN EXAMPLE OF QCEP RADIUS DETERMINATION
The following example is provided to tie some of these ihings together in an
application, Assume an electromagnetic phenomenon as the system medium.
Further assumptions:
1. The base lines = 200 miles = ZC
2, 26 = 1300 (Fig. 5)
3, ce = 25% (Fig, 5)
4, +f = 259 (Fig. 9)
5. A's ciock reads 3.29459025 sec,
6. B's clock reads 3,2968855 sec.
7. C's clock reads 3.29337755 sec.

The first calculation is to obtzin the line, d, connecting base line centers

_ sind sin 500 _ i
d = C-s—jr-l——e-— = 10051"11—'25-6 = 181,1 miles

Next using Equations (5) and (6), tne angles Gn and 9 are determined as follows:

tA = tB = 901.7 usec,
tB - tC = 3.1, 0 usec.
v = velocity of light = 0,186 X 10°
6 = cos™} Y(t_A;t_B_) = cog~ ) 0. 186 X 10 x 902 x 1978
n 2C ’ 200
9n = cos™! 0.8386 = 33°
- \ -

8 = cos”t vep ) | cog™1 0:186 X 10 x 311 % 1078
m - 2C 300

=1
6 = cos ~ 0.2588 = 75°
m

Then, from Equation (8)

= 180° +33° - (130° + 75°)

6
X
6 o}

-8
X
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Equations {10} and (i1) give ~ g
Z
] =dstn(f?m-e) %&’
n sin 0 3
x j
n = ;“_?j.'_.l_il%io.?. = 1000 mnes .
sin 8
_ d sfa (9n + f) i
™'m ™ sin 0
X
181. 1 sin 58°
r_ = ——- 809 _ 1107 miles
m . o0
sin 8
From Equations (24) and (25)
vr
I = I
n 2C sin 9n
0.186 X 106 x 1000 6
I"n = -2 5 = 1,706 X 10" miles per second
200 sin 33
VT
r =. B
m 2C gin Em
0.186 < 1107 BN
- = X
I"m 500 sin 1,065 ¥ 10" miles per second
As a final supposition, assume that statistical data available supports a figure of
0= 0,707 microsecond per ohserver,
or ’
0. = V2 0 = 1 usec. per pair
then
o =T 06 = 1,706 niles
n n x
o =T o = 1.065 miles
m m X
50
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And the last gysteni parameter 3 is

—r;——-l—'-ﬁ'é—s-=1.603

If then we wish to determine the QCEP for three observers for o = 0.5, reading
from Figure 6 () by interpolating between 8 = i and 3 = 2 we get

R= V500 =17.070_ = 7,07 X 1,85
g m

R =17.53 miles

as the radiis of the circle which contains the true point of 2n:ission with a probability
of 0.5.

To summarize, if we are given the fix position computed frorm a data set of time
differences and can calculate the system standarc deviations (0y, Cm) and crossing
angle 0y, the formulas given heretofore or the set curves of Figures & and 6 can be
utilized to obtain the size oi the circle of error for any given probability of error,
Conversely, if one is speculating about a particular circ.2, the prokability of a true
fix being within that circle can alsc be read from these . urves, While rufficient data
has not yet beer analyzed to establish practical limits, i’ is believed that for

0 n Q
n -~
10 \dnand 9m< 170
rn and rm > 2C

This process wili not result in errors greater than 5% in the caiculation of ersors.
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X, DETEBMINATION OF THE ELLIPTICAL ERROR PROBABILITY SURFACE
FOR FOUR OBSERVERS

Tc continue with the analysis of error distribution, we will analyze the proha-
{lities associated with areas bounded by ar ellipse. Since, as shown in Appendix F,
an ellipse has keen found for which all points on the ellipse represent su equal
probabiiity deasity of fix errox, this figure may be very important %> systems applica-
tions, Iu Appendix F the compiete development of the time domain to space domain
transformation is given., As in the case of the QCEP, we will deal first with a four-
cbserver system. The significant resuils are:

1, Given the circle which considers the probability of making timing errors
of magnitude,

2 2 Z
A & =
Tm + 'I‘174 S (71)
whi_h regults in the spatial ellipse
1 4 2
n m
5 + =1 72)
o%ler? or?
X n m
where A
o _ D 3
.,.rn = f.;. <
g
AT = B 2
m Iy
2. The probability of a fix being anywhere on or within this ellipse is given ?
b
' 1 1 2 ;
G n m
O = —————— f exp | - + s dmdn
2m %, Om J‘A )_\? 202 20 °
n ¢
(73)
where

(74)
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For example, for the "natural ellipse"

f)
7\?—'1,82:20“ L
X 31
and J
a = 1€} = 83.22%
8

As a more geveral example, 1o find the eiliptical constants for a2 given probability
of error for the fnllowing case

0 = 1user |
X
CB = 100 miles {
r_ = 1000 miles
n l
rrn = 1107 miles '
6 = 33°
6 = 15°
m
a = 0,5

results in the same Iy, I'y, as in the previous example, i.e,,

Fn = 1,706 ><106

I' = 1.065 ><106
m

As shown in Appendix E, the general clliptical equation is given by

i n2 'm2
e =1 {5)
B ]
;Z 2021‘2 2021" “
X n X m
In terms of tha major, minor axis concept, if
)
a2 = 2)\2 o 2 r~
X n q
2 _ .2 2 2
b" = 2 ox rm | . ‘
- ] 4 )
A= ‘/-log T :
54
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giving
- 1 .
A =9¢log 05 0.834
The ellipse would be
. .
©oom
2 7
a b
with
a = 0.83% X1,414 x10~° x1,706 x 10% = 2,012 miles
8 6

b = 0.834 X1,414 X110~ X 1,065 X10 = 1,256 miles

and the ellipse becomes

2 p/
o n + m = 1

@.012)°  (i.250\°

Thesz are the parameters of 2 conformal ellipge drawn to orthogonal axes. To see
the true spatial ellipse however, either a graphic projection onto the oblique axes will
have to be performed or mathematical analysis using a, n, and 6x to obtain an a', b!
and axes shift angle { .

This section is devoted to a complete axnalysis and discussion of the true spatial
ellipse as it exists on the true axes, m and n, The details of this anzlysis are given
in Appendix H with significant resuits factored out here,

Figure 7 is prezented as 2'. example of a graphical analysis. To emphasize the
elliptical appearance, it was cdecided to agssume a

B =1-§ of 2
m

rziber than carry through the previous numerical example. The assumed ellipse
plotted on the orthogonal set n, z is

m_

Graphic transformation to the oblique axis set n, m is then performed as shown for
the sample peint, o, The +z values of z are both vsed to show the two resulting
transformed points, o'. The transformation is accomplished by projecting ¢ onto z,
then equilaterally from = onto m, thus making 10 equal! to the z value, then perpendicu-
larly down from m until it intersects the n value of o which is also a perpendicular
drop from the n axis. While this solution was nc! performed with any great accuracy,
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it ie intended to display the signtficance and concept of the true ellipse or the obligue
axeg, and to provide approximate confirmetion to the analytic equations. Measure-
ments show the transformed major and minor axes to be approximately

at = 7,3

bt

[}
iy
!
ot

with an axis shift of approximately

If we then let x and y represent the axes which contain a' and b' , we have the
quantitaiive relationship
2 % 2 2
A ¥ =X _ 4+ ¥ -
&

@2 185’ @)% ol

This then represents a complete descriptirn of a particular eliiptical contour of
constant probaktility, It can be made as accurate as the measurements of data
(At, T’y and graphical solution wiil allow,

The inconvenience, if not inaccuracy, of this method strongly indicated that a
complete analytical solutio:. would certainly be wzll worthwhile. The results of the
analysis given ir Appendix h are the following set of transforms from the orthogonsal
to the true oblique axes.

9
2 1 a X \ b~ (-— X ) ab
R = — {14 +— 11+ % coe 8
Mex/Min - gyn? GX{Z( chf) 2\ Vix?) Vil x}
(76)
where

1-b°/a®> _ a/b-b/a
2b/a cos Gx 2 cos Hx

1

a \/'2)«0'1“
x'n

b

NE»3 o, I‘m

Thug when a>b

RZMax=__lz_ {a2(1+ ,1---1_2-)+b2 (1_ 1.1 2) . 2ab cos 6 an
2 sin” 6 \ 14 1+x 2

i +x
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and when b > a
2 1 2 \ 2f B! 2ab cos 7
A = - a -all - b1 4[] - = — ap cos
s {0 ) ) e
V1+x" Do)
Rsz=.._1..2_. {32(;+vl___§_1) +b26- /1_ 12\__23bc059
2sin 6 !\ 1+x 1+x) Jie?
(80)

Associstion of tae quartities RMax, RMin. a', and b' with the axes x and y ie
somewhat arbitrary. Ingeneral with m and n oriented as shown in Figure 7, there
will be an axis of transformation which lies in the quadrant defized by n and its
orthogonal LOP, If we call this the x axis, thea it will be the msajor axis regardless
of whether a was longer or shorter than b, and the value of Ry a5 would be applied
to this axias; this x axis will always lie on or between the LOP's. Perhaps the previous
formula would carry more genersl significance if it were worded

5+ =t = 1 (81)

The angle of shift { of the pseudomajor axis to the truc major axis is given by

1 T—‘-—
'\ v ) e
cos2 Y = .=
___Ié__ 1 +—= 4+ 2ab cos ]
8in / _ﬁ( 2 1 +x2
which can also be written @or a > b)
sinz 6 ( ‘ﬁ )
cos2 ¥ = (83)

1+‘jl_ 12 ( ’ 4+ 2b/a cos 6
1+ [ \/_IFx
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S — e i s P, P I s b S i =

foro>a
9 i A
ain” 6 1+‘/1___7)
2 14x"
cos” Y = 84)
2/ - .
%kl —‘/1- 12>+1+‘/1.,_.].'5+2 /b cos 0

whereas in terms of the major axis transform
——
1 +4/1 - —"1—12-
14x
2 (Major Axis Xform)2
Figure 8 presents a few of the curves for these functions. The curves are pre-
sented mostly to get a feei for the positicning of the axes of the true ellipse.
The number of curves calculated and number of poiats par curve are not consid-

er2d adequate in this report for good engineering accuracy. The equations are
accurate, however.

cos? Y = (85)

As with most all special cases where certain results are invitingly ob-
vious, it is interesting to note, as proven ir Appendix H, that when Q@_ = 90°,
i.e., the true ellipse and the original ellipse are one and the game. “solu-
tion of the above equaticn gives ¢ = 0°, This result corroborates that no
shift is necessary.

Algo derived in Appendix H are transformatioo formulas for the mejor and minor
axes, If R'Max s considered the transformed, or major axis vaiue, then R'pMax can
be determined readily from

2

2 ——————
R Max R’ May) 1 T b 1
=] 5 = 2 1+ 1-._._—2. +__2_ 1 - 1_.._.._2.
Rptax a 2ain” 6 1 1+x 8" \ 14+x

b
+2/acosﬁ}

(172}

P

1+x

where a > b, This is a major axis transformaiion formula, For b > a we consider
b and b’ *he msajor axes, and

H 2 2
® Masd 1 a 1 + 1 +z'4/b cos €
2 - 2 T l-4l-—=)* "3
b 2 sin” 6 b 1+x 14% 1+x2

(794a)
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Figure 8. Major Axis Shift (Four Observers)

Similarly, the minor axis transformation is givenby a > b

®, ) 2 —_—N g
Min’ _ 1 a R I R A 2°/b cos 6
T P E A W V T = 8
b 2 8in 14 (782)

or, forb> a

2

'y g L4 S A ) 2%ac
3 3 Ttz ll-yi-—3]-
a 2 sin” § 1+4+x a 1+x 1+x

60
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Figures 8, 10 present some of these curves of major and minor axes transformatioz.
The transformed minor axis values approach 1 as & limit, i.e., the ellipse neve
gets any wider than its original value. The transformed major axis vaiues, however,
approach(a or bYsin Oy as their 1imit, meaning that as the crossing angle vanishes, :
the true spatial error ellipse becomes infinitely elongated, The choice of rbscissa §
value wes purely arbitrary, and whichever ratio was greater than one was selected.
It i noted that for a/b, or B, greater than 5, tha transforms are virtually at their
limits. In fact, (a2 or h¥sin 6 is a good approximation for £ > 2,

10 4
o ——————————apeenaacam

0.4

0.2

(2]
P S

2
a’b or b/a >!

Figure 9, Minor Axis Transforms (Four Observers)
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XI, DETERMINATION CF THE EEP SURFACE FOR THREE OBSERVERS

Derivation of the true eilipse transforms for three observers appears in
Appendix 1, with the following results. The general formula for the major and

minor axis is
%—bzlt l--—;:-— + a2 £ /1 12
1+€ 1+¢

4 i 1
4= ab i+ 4f1 - i+ J1 - cos 8 (86)
’ J( IT£§>( 1+c2) "t

and the transforms are obtained from

L ST B e | i o

R = —3
sin“ 6
X

RH)

R _ 1 2 a2 4a J 1
= = 1+ f1 - et 1 - +=< {1 - ——1Ytcos 8
b sm'FJ 1‘%2) 3b2( 3JJ z.+c2)

(88)

depending on the relative sizes of a and b in accordance with the following table:

FORMULA for
I XFMax is i XFMinis
a>b R/a (87) R/b (38)
b>a R/b (88) R/a 37)

£ sand ¢ are given by
2\2
a a
£2= 2 -25005 Gx '52)
3(az/lo2 - 22 cos ex)z
AV
s \2- 2P/8 cos 6 - b2/a°)
t%e =
36/2/9.2 - Zb/a cos Bx)z
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The retaiion of the major axie, from ita pseudo to true position is given by

VZ/a(I* b O )
wlz/a(u‘[l_:_

008 § = —pEp—1" ‘ [a>1] (90)

[b>a] (89)

cony =

where in Equation (89} y is mvasured fro:n the m axis and in Equation (80) ¢ is
measured from the n axis,

Contrary tc the case of four observers where the resolved major axis always lies
between the LOP's, the three observers case reeults in a resolved major axis which
will, for the most part, lie sutside the region defined by the LOT™x, The only
exception to this iz when

1< B<20059x

_ onO
Gx\60

Thiz suggests, deperding ca the cost of a fifth observer, that a five-observer system
ri1ight produce an intersection of ellipses such that the area of uncertainty is =ignifi-
cartly reduced.

Detarmination of the values of a and b requires a derivation similar tv the case
of four observers. In Appendix C the relati>nshi{p between the size of the (concentric)
ellipse and the probability of containment is given by

2
a = 1> (1)

Since this formuls and Equation (73) are numerically the same for given values of A
or S, Figure 11 is prescnted &1 a quick reference of related values.

The CDC 1604B computer was again utilized to obtain the sample curves of
Figures 12 and 13 showing the transform values as a function of a/b or 8 . Compari-
son of these figures with Figure 1-2 skows that for § < 600 the maxima of the miuor
axis transforms ard the minima of the major axis transforms coincide w'th the
maxima for the curves of Figure I-2, Further, the contours of the ininor axis trans-
forms follow the contours of the quantity

{“"_I’" 1
1- 5 or 1- 3
i+ & 1+ ¢

whichever contains the quantity a/b or b/a greatei than uaity,
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As in the case of four observers, the curves in Figures 12 and 13 are not sufficient

to provide general engineering calculations, although they are reasonably accurate for
the values of €, chosen.
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XII. CGMPARISON QF EEP SUURFACES ¥OR FOUIL. VERSUS THREE OBSERVERS

The subject comparison is not quite as straight’orward as that of QCEP. To
equeie the wo gvstems, the following annrcach was vaken., Given the acceptable
uncertainty or Lroubability o we have

[ 1
7\=S=V10g (92)

1-&

This determines the time- ox space-limited configuration

2 2 | . 2 2
AT _“+AT i _ AT," + AT, - ATy AT
20 2 3/2 c,,z
* |4 0OBS 3 OBS
or,
w® | o’ M, MN U
P ) = E 7 - =5 = A
20 20 3/2 O /99, 3/2¢0 o, (93
m 1 14 0Bs : = 2 OBS )

where upper case (M, N) is usc. to distinguish values from m,n and which in terms
of the nontransformed ellipses is,

n
m? o' | M ¥ MN ., o)
b2 az b2 2 b3a3
4 "y |4 3 B3 3
where
8, = Ve x 04
by = V) O st
= 2
a3 JSLSUm
b3 = \/37280‘m3
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To recsall the gzometric eignificance of this we have

N

Taerefore, {f, as in the case of the QCEP, it is assumed that the gystems are such
that on aa avorage or median, or any other bas:s

?Ei:f,m_"=5=.o_m.3=rm3=3
Oad ‘nd 4 a3 n3 E
Then
a b ,
4 J3
S s 2 e L1 (95)
3 3 0372

This advantage for three observers is not the final conzlusion since the finel trans-
formed axis valuea r. - the conclusive factors. To derive equal 8's the ratic desired

is
Major Axis (3 OBS) _ 1  XF Max o6
Major Axls (4 0BS) ~ T.15 XF Max, e
Mior Axis @ OBS) _ 1 XF Min, o7
Minor Axis 4 0BS) ~ 1.15 XF Mia, (80

Figure 14 gives the results of such & ratio comparisor for two values of 6 300 and
£0%). It can be shown that theae curves do a flip-fiop at the critical angle of & = 600,
It is again claimed that in systems applications the greatest concern is for Oy < 60°

as covering the majority of practical cases. Further, it iz the elongation of the

major axis which is the worst offender of, or produces the most damaging etffect in,
finding something or somebady. Thus, speaking of curves A and B, while tke ellipse
for three observers is a little fatter than for four, the major axis shows a considerable
improvement for ‘hree obsarvers.

70




13 \ v i
& \
NE | |
P | \\‘; T ;
’ C A |
i u i
1.0 —{\.\Lq . ",—ir—"""# nar
—
0.9 a‘ el ; -
0 - l
0.8 1 I
r , % Minor Axis, 3 Observers
/ A S - 2 D
0.7 4 Minor Axis, 4 Observers
0.6 ; BE Mojor Axis, 3 Cdservers ¢
Major Axis, 4 Observers
I
. By] Curves
e B
01 [ 30°| A8
g0°f ¢80
0.3
0.2 !
0.1 . :
| | | |
1 3 3 4 5 [} 7 .} 9 [
a/’b or B

Figure 14. Comparison of Ellipaes for Three and Four Ctscrvers
Returning to the example used for QCEP,

on = 1,706 miles
om = 1,085 miles
B = 1.603
8 = g°
x
and for threr. observers
Rc = 7,53 nilles

a
E
£




We now wish to determina the ellipse for o = 0.5 in-order (hs¢ Givect comparieons
can be made witt QCEP. From Equation /22)

B = ‘Jlogi-:(—’ = 0.834

e = J3/2 SOn = V3/20.854 X1,706 = 1,74 miles

b = \‘3728(1!m = V3/2 0,834 X1,085 = 1,09 miles

Then for the major axis of the true ellipse

R ooy = 3KF 00 = 1.74 X7 2
and for the minor axis

len = bXme = 1,09 X1,14
giving

Rohax = 12.5 miles

Rin = 1-24 miles

For which, as discussed below “
1,24 < 7.58< 12,5
or

Rmin < Rc < Rn'.:ax

Thus we have a complete engineering description of the tiue spatial elliptical contour
of a conatant error probability. The position of the point P in question with respect
to the system base line gives rise to the Oy, Opy and Ox of the system, and the desired
reliability of measurements, a , gives rise to the pseudo-elliptical quartities a and b,
From these, the true ellipse of the probability o , the position of its major and minor
axes, the values of these axes, and, if we wish, a complete skatch or plot of any
desired ejlipse can be described.

There is 8 somewhat crude yet interesting link between the QCEP and EEP which
may be vgluable for making system estimates. Observing Figure 15, it is apparent
that ther# is a circle of radins R and an ellipse of major axis Rmax 2na minor axis
Rmin, which by virtue of their respective areas of consideration wiil produce the
game probability of fix.




=y
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Figure 15. An EEP/QCEP Linkage
Thus we have the linkage

R <R <R_ (98}

ax
Since it is believed that the elliptical constants are more meaningful and more readily
calculated than the circle, if the EEP is known, the circle R with the same probability
can be estimated from the above limits, Actually, if one wished to pursue this further,
a much closer (weighted) estimate could be developed such as

RC N kRmax

whezre

*Sitterly, in "LORAN" (see rev..on p.21) has proposed for the QCEP case, when
converted to the notation of this mcde, that

0.775 C
- n |
R sin yx J;ﬁ [on<"mj
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XIII, CONSIDERATICON OF UTILIZING A SINGLE S8ET OF DATA

As 8 closing observation on this medel, # was felt that a converse situation
concerning the use of a aingle dats set should be discussed briefly.

P SR

Figure 16, Effect of a Single Dsta Set and Eilipse Cozrection

Consider Figure 16, We have estabiished a model which enables us to caiculate
that a signal originating at the Point P will be locsted by the system within or on the
o = X ellipse with a probability of X. Or, succinctly, it ize signal {(or experiment)
were repeated from P, say a million timas, then 500, 000 of the measured points
would be within the ellipgse @ = 0, 5.

Suppuse we are faced with a converse situation. The aystem receives a particuiar
signal, and, with errors, locates it at Py, If it is important to describe an area which
will contain the true point P with a certain probability, & , what ghall we de? OSfnce
we presumabiy have no other information available, the first impulse is te treat Py
as a true point and construct, in the manner of this study, the ellipse fora@ = X as
indicated in Figure 16, Another rationalization for this is that (a priori) it is just
as likely that we have committed errors in one direction as in another, or there
would appear to be no bias error,
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Then suppose another one of thesa 500, 0600 points appears to be at Py, This may
be considared an equally probebls situstion becsuse the probability density function on

i the periphery of the o = X cllipse 1o u constant. Agein, we wish to descrils the area

,whmhwmommpwi&lprobabuﬁyofa=x, and proceed as for P; . Note ihat

| th ellipse sbout Pg sctuslly contains the true point while the 2llipse about P; does not.

| Is this & paradox?

One possible answer would be to search for &all possible true points P whose

| ellipses would contziz P; as one of its (assume 500, 000) measured points, A sample

. sosttering of such true points or ellipse centers is shown., The outer limit of such

! 2 gathering would be the egg-shaped curve (shown dotted), This curve, it 18 suggested,
comes more nearly describing the (converse) areas based on one sampie measure-
meat (P3) whick would contain the true point P with probability a . §fm§larly the
normal @ = X allipse about P2 would be weighted by joining centers of ellipses which
ocztain Py &8 a peripheral point.

The mechanics for esiablirhing this type of an inverse function and perforining
its soivtion are beyond the scope of this study. Suffice it to give one word of caution
sgeinst proveeding along the lines of 2 singular, discrete, point solution. It :nust be
remembered that the probability of getting precisely the point Py, given 2, 18 an
7 infinitesimally small number which becomes zero when ihe point P; consumes zero
2s dimensions. Thus a discussion or calculation of the conditionsa! probability, p (P;/P),
appears to be meaningless, Likewise, given a measurement Pj, calculating the
probability p (P/Pj) that @ particular P is a true point is equally meaningless.

Hence we are apparently 1ubbed of an opportunity to analyze such expressious as,

®, P
el i
PE/D = )

p(®, P)
/ -7
pEFY = @)

or to apply Bayes or any other theorem. Even if we did not kave this handicap, there
is no a posteriori knowledge of the distribution of p(P) or p(Pj) uniess some sort of
specific {say, targot) information were available.

¢ Fortunately the modifylng or egg-shaping factor (if this be the answer to such a
i requirement} is a relatively small percentage of the major axis of the eliipse.

4 = e s i ot e e




XiV, DIVERGENCE FACTOR OF THE TRUE OBLIQUE COORDINATE SYSTEM

Another and perhaps more plausible explanation lies ir the basic premise
or in simplifical.on of the mudel. As pointed out in Appendix A Equation (A-12),

vr Atm

m = chinan

The errors encountered in m, n are nnt (within limits prescribed for rm, 6.5, Tn, )
the cause of this so-celled paradox. Further, the elliptical relationship for three
observers, Equation {(G-30}, Appendix G)

m2 n2 mh L 82

3t 7 -
3/2 om 3/2 o, 3/2 on om

using such calculations of m, n, is perfectly valid, However, this approximation is
aoparently overshadowing another assumption about which very liitle has been said.
The grid work for the coordinates of Appendix I, Equation (I-1), (-2), Figure I-1,
etc., assumes uniform parallel lines which are directed by the LOP's or direction
of the hyperbolag at the assumed true point.

As Frigure 17 shows, the coordinate grid systems cerived from actual conditions
of Oty and 4ty do not contrin this ideal vniformity. Introduction of a true or non-
constant grid ahout peint P, {.e., one wnict fcllows the LOP's or hyperbolas about
P, causes & variation of 6, . Looking at Figure 17, the sigoificant change in the
mecaanics of finding R s that the true R 1s PP" wheress (he model in using fx, m, and
n derives PP!, In terms of fornulas then, PP" is

R = —pe [m)" + 01" - 2w’ 00 9 ] )
X

Determination of the elliptical transiorms therefore requires finding the maximum
and minimum of

CTI—TF = f(m', n', 6}") (103)

where
by = ¢(m', n)
As an (engineering) alternative to this complex problem, it is suggeseted that the

following proceduie will give a very good approximation of the true major axis vaiues,
it can e shown (Appendix K) for a given true point P and displaced LOP's that the
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points P!, P!, P, etc., all lie on u straight line. The correction factors of the
original major axis aie given by (gee Figure K-1),

)
c/a:-gx
X

6

d/e = 7
Z

e
d/a = o
z

wherc ¢ 13 the major axie value obtained from application of the ¢transforms, and &
and d are as shown below.

B . m
9 Tr
c/a = = L L
) ]
x x
8
x
d/e =
g _n _mn
X r r
n m
ok
d/a = L m
ik
X %2 Tm

where n and m are the required coordinate values for Rpax. The chauge in the
minor axis value will not be significant.

This moedification or correction factor is, of course, applicable to the basic model

irrespective of the so-called converse problem, i,e., it is applicable to the ares about
the true point P,
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XV, DISCUSSION CF SYSTEMS APPLICATIONM WITH A DEEP SPACE FIXING EXAMPLE

Wnile another book could be written on the applications of this basic
model , comments here will be limited to introductory genersl observaticms.

With regavd to the number of obaervers (stationz) to be emp.oyed, the cost of
a fourth obsel ver must be weighed agsinat the improvement in crossing angie (6y).
Included in the cost factor is the problem of communicating data from the four
observers over greater distances, and the inhereni redaction in accuracy of four
versus three obgervers for baae iines of equal or similar lemyth, The I'and hence v
factors will not, as a rl2, demunstrawe any significant differences over a given srea
of concern.

The phenomenology ot the transmiss:on of the signature of the event, whather
longitudinal (seigmic) ortransverse(light, sound, hea:, radio, etc,) requires only
that the velocity be known and that it be either a constant or vary with the path in 2
manner which is known,

One example of a sound or longitudinal vave application iz the SOFA® gystem
which locstes skerp disturbances, such as the buiiers expio'ing of 2 ship sinking in
the sea. Standard deviatiom vaiues of 0 were on the order of 1.0 to 4,0 seconds
depending on the ranges uader consideration (up to 2, 500 miles) with accuracy on
tke oxder of one equare mfile,

The time resolution or sharpness of the siznature of the event, as stated before
hus direct hearing on the accuracy, e.g., At, 0, and 0y, of the system. In a refined
meoedel atteriion must be paid to these quantities varying as a furction of rarge. The
state of the art ip generatisg and/or measuring particular amplitude/time or
frequency/time characteristics has improved tremendously over t 2 last (wo to three
decades. In the realm f electromagnetic disturbances, systems have been developed
which obtain a 0 on the nrder of ore microsecond,

Thz signature mus: be recognized and distinguished from other {intentional or
o.ierwise) similar signals, This shallenge 18 certainly not peculiar to position-
fixing systems.

The observers must use timing devices which are precisely synchronized with
each other or which have nown time displacements with respect {0 each other.
Deviations from such conditions are charged directly to Ox and At , With the develop-
ment of atomic clocks with drifts of 1 par* in 1013, it is possible even without syn-
ch.onizing communications, to stay within G of 1,0 usec.

Communications must be available to tranamit timing data to a8 common point of
intelligence. This must be done reliably and fast enough to keep up with the average
rate of cecurrence of events,

As an uitimate in application, this modzl places us in a position to make direst
comparisons with positien-fixing aysiems, such as tracking apace vehicies oz
missilec, These apparently utilize a single station radar D/F-ing principle in




conjunctice with muiticiation correlation tecanionss, it is the bellef of the wuthor
test TGS eysisme will ultimately replss: aone I/ F systems with an ordsr of magni-

tu’z imprivemeii ¢ socuracy. The A’r Foroe todsy has systeme which show TOA
2 be definitcly awr . tu D/F,

As wn ecoamipla, 3upposz we wished to reach out into deep space and messure
from exrth the positis- of a space ship such as Mariner where accuracy is extremely
importsnt. Suppose further that we have implemented the following synchronous
system of four sutellites where 1 and 2 are in the equai:rial plane and A and B are in
2 volar plane,

T
P :

The four coaxis: atates of existence which occur every aix hours are

_*T-
I
8 (08G9}
i B
2 7. !
A
e Ej s Y an
I m
A {1200) A 11800Q)
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If each statict is acting as an analog relay with treusit time to earth known to within
0.1 microseccnd, the four sixiions shown represent an orthogozsily oriented three-
aimensional r.easuring system. Geom.*rical factors for one of these states might
appear a3,

Assume, roughiy, & renge of 1 millicn miles and a very connervative eatimate of
_ 10 microseconds for 0y, K we seitle for an uncertainty factor of 50%, we have the

following parameters
2C = 23,009 mfles
o = 10 x 1078
a = 50% )
_ .8
T, rm = 10

Obviously, O and 6y would depend upon the relative orientation of the system to the
ship. Howevei, angles of 60C and 1189 are falr representations. To estimate the
error magnitude in the plane of 1-A-ghip

6 6
Fn"rm - 0.186><1: X10° . 107 _
23 X 10" x 0,886 o
and £
-6 K
0 «0 = 10%X10 " X1¢ = 100 miles ;
o m £
B =1 i
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Since 9 is & critical pa-ameter, a close estimate is cbtained by

(8]
0_ - 23,000 + 8000} sin 60° .
108

6 =1%o
x
Locking up R for the QCEP on Figure §({) gives

R = 256,60_ = 25,5 X100 = 2,550 miles

The elliptical constents in this plane were determined in conjunction with the
trensforms as

R major

3, 150 miles

it

R minor 100 miles

To compare with the following crude yet fundamental D/F system assume antenna

FLYING
OBJECT

deviations from the (rue line of propagation are of Gaugsian probability density and
that a standard deviation of 0,10 is represcntative, or

vy = 0.1°

From this point on we can readily equate the two systema to the same model by

_ - s a0 _ - R
cn 0¢rn—0.0017o>\10 =3.75.10" miies

o 6

m

it

0gr = 0,00175 X10° = 1,75 %X 10° mi‘es
m

with a crossing angle of

8 = 8,000 _ 28 minutes
X 6
16
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Since the function of antenna A should be completely independent of antenna B, this
system is similar to a four-observer TOA system; as a best estimate from the curves
in Figure 5¢) for the plane of A-B-Ship, the QCEP is given by

R = 3000, = 1,74 10° X 300 = 5.25 X 10° miles

This figure seems unbelievable at firet glan:e, iike looking in front of our noses for
the traveler, However, when we examine the facts thet 6, is lese than 0.5 degree
and that the beam uncertainty {3 0¢ = 0.19, a total collinear error of 1.0 miilion
miles (2R) has some meaning,

If a correction cf the collinear errcr value of R between the 2arth and the ship
is effected in accordance with determinaticn of 6 (see Appendix K),we o™taina

value of
o em Aen 2 C o
ey = ex’r-T- +—§—- =0,5"+0.5 = 1.5

T Ztan W72 = 0.0262
Tinally, #f we wish to correct the major axis of the TOA ellipse, as per Appendix K

a
X 0.0262
a/c = Y] 7 —0062+2x61 = 0,995
by + zn 4 002 108
A8 A8
.2 __m
dic = X _2 2 _ 0.0262 - 0,00012
: Ux 0. 0262

d/c = 1.005

Thus we have observed an improvement in accuracy of approximately ‘wo to three
orders of magnitude. How much better this approach would be than today's refined

\ space tracking D/F systems which may superimpose radar range or integrated CW

it type of data, the author has not had sufficient information to determine. There is

! also the ndditional factor that atmospheric refraction errors affect the U/F aniennas
but do not affect the TOA system.




APPENDIX A
MATHEMATICS OF BASIC GEOMETRIC ELEMENTS

This appendix i8 concerned with providing derivations cf some of the more minor
relationships used throughout the study,

1, Discusaion of

m =T &t (A-1)
m

In Figure A-1, C is the radius of the circle and rm the distance OP. m is the devia-
tion of the m axis or m coordinate of the displacement of the trae point P due to an
error A8, a is the base line intercept of the hyperbola through P. An ervor in the
time difference of cbservations at A and B results in the base line error ot €.

m is preciseliy given by

m = r_tan Af (A-2)

For A6 < 1° we can write with negligible error

_ ef
tan A6 = < (A-3)
Then
of
m =T E (A-4)

In order to get ef in terms of € another engireering approximation 18 made, with very
small error, that 5

-8 -
r i (A-5)
Then
f C
< 5 (A-8)
and
C
ef = 3 (A-T)
hence
c r €
m=Tht ~ Csinym (A-8)
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0 T @ 0+ 8
Figure A-1, Geometiy of Determining m or n

Returning to the hyperbolic aigebra, if ATy, 18 the net timing erruvr made by A and B
efter subtraction, then

2(a+<y = v(T A-TB+ Atm) (A-9)
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Alse, for perfect time readings

2a = v(’l‘A - TB) (A-10)
Subtracting Equation (A-10) from Equation (A-9) gives
- ¥ -
€ =3 Atm (A-11)
Again substXuting
LI Atm
™ " 3Celm0_ AT
m
If we choose to call
r_V
r = Be (A-13)
M 2Ceinf
m
the final result is
1 Ao
m =T &t (A-14)
The accuracy of Equation (A-5) and hence Equation (A-12) dissolves rapidly for
Omn < 10° or B /n > 1700,
2, To obtain
vit, -tip)
vty
9m = co08 % (A-15)

As discussed in the text of this study, it may be necessary to determine 6y, and 6p as
closely as possible to either approximate a fix or analyze the zrror characte-istics of
a poteatisl fix point. In the latter case, 9, and 6, would mast likely be geographically
measured, Inthe case of the former, we would be working with a given set of time
measurements. In Figure A-1

of
cos 8 = a/c {A-16)
From the hyperbolic algebra
2a = v(tA - tB) (A-17)
thus
9., = cos™ ———E—-——V(t‘;‘ "B
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8ince tA and ty are subject to the errors discussed elsewhere, the true picture is
given by

A Y
6, = ool —fB s ag (A-.3)
8., Tc show
R - ‘-—mlz-é- m? +n? - 2mn o8 6) (A-19)
b 4

Thia derivation doas not necessarily apply to the general problem of evaluating a
poini P in an cblique axis system. It may be oconsidered a gpecial case of an affine
trassformaticn in which the LOP dispiacements from the true LOP's y and z are
defined to be pazallel to v 2ad 7.

From ¥igure A-2 the geeral equatior for the value of m is

m = mo+zsm8x (A-20)
Further it can be seen that
m, = ncos Gx (A-21)
and
m = ncos Gx+zsm Gx
Solving for z
m-ncos 0
2= —pg—T (A-22)
X
Ailso from Figure A-2
R% = n?+ 72 (A-23)
but from Equation (A-22)
2 1 2 2 2
2o = (m“-2mn 208 §_ + n° cos” 6.)
ng 0 X X

and, substituting in Equation (A-23)

) L -

1
2
sin Ox

2 + 0% cos? Gn-zmn co8 GX) (A~24)

(nz sin’ Gx +m




or, finally

Figure A-2. Geometry of Determining R

& . (m2+n2-2mnc08 9x)

R® = —%—

81!12 8
x

91/92

(A-25)




APPEND TR
QCEP CALCULATICNS FOR UNIFORM ERROR PROBABILITY DISTRIBUTION
This is an aralyiis of areas since the probability of a fix occurricg in & glven
area iz divectly proportionai to that area. Figures B-1, B-Z, and B-3 {llustrate the
three possible cases. Quantitatively stated these are:

CASE I 2R< AS < A8
CASENl A3 <2R<AS_

CASE I Mn < ASm < 2R

4

The difficulty ia this analysis lies in fcrmulating that portion of the €XCEP) circle
which lies within the error quadrangle,

Case I is the simplest since &li of the circle is contained withia the quadrrzgle.
Assuming ASy < ASy, for the area of the quadrangle

AS AS
ALt SR ®-h
For the circle
A, = gRe
Y4
Thean for 8 QCEP of 50% !
A, = 1/2A B-2)
1:5112 15% AS“"— -3
% sl ®-3)
Solving forr R .
'AS_ AS
u 1] m )
R -\/’zﬁm; ®B-4)
Since as < as
assume ASm =y ASn
where Y =1
'yAS Ag VI
- _n J 2y
i % i 5 5" 2 Tamh_ (B-5)
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Figure B-3. QCEP Circle - Case 1II




T -

But i'ince we have the recuirement
Asn
R<s
s~ wagult 1g the requirement
v T 8in © <1
X

o < o

or

Tuls resulta in the limits

{‘)’ =1 ] {y< 1.57
6> 35~ 35! 6 = 800
Returning to Equation (B-4) and from Appenaix A

v, €

a8, = 1 A8 = EaET

By substitution

1 Th © Tm*
= N - X —
= {mrsmu Temd. Cslm ¥
n m

T T

E R = .f'. n_m

: Cdz‘n sind_ginf sin ¥ _
X n m

For Case il

& 3
ASn 7 2R < Aam

Al
AZ ~ 2R AS = —<
1 2
Asn Asm
nAT =
A% T gem
AS
R = ——n
4 gin Ex
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Finally

l‘n €
R smy, (B-13)
X n
CASE 1 A8n< A8m< 2R

This is of intarast because it embraces crossing angles of less than 39° which is
generally an area of fix points with range on the order of 1.8 bace lines and beyond,

As obgerved in Figure B-3, a close approximation to the enclosed area is given
by the area conteined ia the rectangle

‘, 2 sic2 o
Asnby 4R -Asn B-14)

or '
- Z 2
AZ = Asn 4R Asn
A1
and since Az = 5
AS 4R2 AS 2 = Asn Asm -— 15
n¥ I 2 sin Ux (B-15)
Solving for R _ ﬁ.::;s - 2
1 m ;
R = -V—T- + A8 (B-16)
2 ¥ 4ain 6 "
By zubstitution via Equation (B-8)
R 5 J rm? rn2
YR t — B-17)
2C ¥ 4o1% 8 am® 6 sin° 6
X m n

a6




APPENDIX C

QCEP DERIVATIONS FOR A NORMAL PROBABILITY DISTRIBUTION OF
ERRORS FOR FOUR OBSERVERS

As stated in the text, the probability of a point P' lying within a circle of
radius R 18 given by

'! i |
. , o2 ml
& = g f exp == | exp |- 5 | dmdn (C-1)
nm A 20 2om

where A is the circie of radius R. ¥, and Oy, are system standard deviations as
defined elsewhere.

The immediate problem in performing the indicated double integration is that we
are not dealing with orthogonsl axes in which one variabie can be heid constant at some
known value while summation is performed throughout the range of the other variable.
In order to utilize this accepted method of performing double integration one of the
variables must be reduced to a component which is orthcgonal to the otrar variable.

In Figure C-1 assume the zircle R providcs we desired probabtiity o and let 2
he an axis at right angles to n. Axny point p o2 a line parallel to z will have a
corstant value of n, such ae

D= ong
It was shown in Appcndix A that the relationship between the quantities n, m, ard
Gx is given by

=ncog d +=slnh
X X

K this substitutioa 18 made for m in Equation (A-1) and n is chosen as some
constent value, e.g., ng, then variatic=s in m become a function of variations in z
alone, which in turn satisfies the orthogoral requirement for integration, i.e.

m = 1, cos 9x + 7 sin 9x (C-2)

and

dm = dz sin 6 ‘ (C-3)
X

Substituting in Equation (C-1) gives

l-_, o2 - (1, co8 9x + 2z gin Gx)
o = 2170 ffAc\'n -::-—i-hexp 5 dndzsin()x
"‘ (C-4)

20

Zun ] m
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et i R A A ¥

Figure C-1. Elements of QCEP Geometry

It can be seen further from Figure C-1 thet the limits of integration are
-R< g <+R

Since we are now performing the integration firat with respect to z and then wi'n
respect to n, the subsecript K can be dropped.

5+ RZ_nZ .
sin 6 . -n -
“woo | J o ew| iy | ew| 2o trend g a
n R _JREZ 20 20 (C-5)
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For verification purposes it is convenieni to rewrite the last term as

i’—slnz 8t cot 0 +z)2]
- 2

L 20 J
and - R +JR§-n2

2 2
o _ sin 8 -sin” 8 (3 cot 8 + 2)
T @mo_1 ff z | &P 2 dz dn (C-6)
R*- Zan ZOm

exp

To prove the correctness of this anzalysis, it is necessary that for an infinite circle
all possibilities are covered and

a =1

But Equation (C-€) becomes

sin 6 - 7 -n2 [4m29 <>ot9+z2
o - 2L [ Fon| 2| ol aittome st s

Since these two integrations are to be periormed independently, in any order,
and since it is easily suown that

% 2
f exp[‘zlt‘?é] dn = 1 (C-§)

-4

it is also necessary that

*? 2 2
Al exp | 28129 (‘“’g‘f 2 ldaz=1  (C-9)
Vin o -00 20
m ol .
To check, let
v = (ncot9+z)2
d = dz
when

and Equation {C-9) becomes

ain 6 f GXP{SH;OO -!dv= gin 0 wq -1
VT 0 - Jﬁom gin™8
20 2
m
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Thus *“:0 necessary ccodition is met,

Ancther way of stating this proposition, which is more general than Equation {C-6),
is to conzider that every Nk, m (23 shown in Figure C-1) traverses the values from
Mj to Mg, and to step from the wer of an orthogonal component to one of summing
all the probabilikm associated with combinsticns of m¢ by ny as my goes from M; to
My, f.e

1 R M2 [-nz m2
a = — exp| —— | exn|—5| dodm (C-10)
2% Oy Om .£ {a 20 2 20 2
n n
whare
M, =f@ =0 cos ex--zsinex
My = 0 = myoou b rzeinf
or (dropping the subscript)
f,(0) = ncos Qx - \ll?,z-:n2 gin Ox
_ 2 2
fztn) = n £o8 9x+j_R -n” sin Ox
and
1 B fam) | 2 ol
a = a5 f exp 5| exp 3 dmdn (C-~11)
nm - fl(n) 201:1 20m

which is the formula quoted in the text.

Since this concept deals with the well-kmown Error Function or Fehlerintegral
for which there is no antiderivative, and since from a system aspect we may be
dealsag with small values of b, it is desirable from an engineering standpoint to try
to reduce this to a single integral even if only for limited conditions. One way of
performing such au approximation is to consider the integration of f(m) first, e.g.

fp ) 2
1 -m
£ = f exp 5| dm (C-12)
VIOt ) 20,

Referrirg to the normsl probability curve of Figure C-2, the values of f1(n) and
fo () are represented as My and My, Since performing Equation (C-12) is equivalent
to finding the prescribed ares under this curve, £ is equivalent to the shaded area
between Mj and Mg, This urca can be approximated in various ways such as ver-
forming a series expansion about the point (Mg + M1)/2, This,however, tends to
complicate the situation, Therefore, it was decided that for small values of R sin 6,
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Figure C-2. A Normal Distribution Inferpretation

a reasonable approximation is obtajned by assuming the straight line between p{Mj)
and p(Mg). The area is then the rectangle

M22
My -V e | =3
m
pius the area of the trisngle
1 'M12 'Mz2
5 M, - M) lexp -exp | —5~
2 Ve T og 2 20 }
and Equation (C-12) becomes
57 O 2~ V1) ¥ | 3 (,-M,) \exp 2 ~exp 2
m 20 20 J
n m
Expanding and collecting terms
2 '; \
. | y
§ = mo, (Mp-M)) (ew —
m 2y /
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8ubstituting into Equation (C-11) and replacing M

X R ~f.%m) -1, %m)
g 1 Z
O B —emam f, m)-i, Mm) exp + exp da
2t Qn Gm -L {2 1 } 26 2 20 2
o m m
(C-13)

which is the formula quoted in the text.

The limiting valoe of R sin 6y is somewhat arbitrary. It can be seen from
PFigures C-1 und C-2 that the worst erzor is committed in the region of m = 0 for
here

Mz-hils 2R sin 6
x

i 1t {8 desired to hold this value to, e.g.,

MZ - Ml = bO’m
then
bcm
R sin Gx _<_——2-—- (C-14)

While this engineering limit has not been fully explored in this study, it appears
from the computer runs that good confirmation with the generai formula is obtained
up to 2 Am of at least one sigms orb = i.

Returning to Equation (C-11) and a more general evaluation of @ which is rigorous
for all 8y, we procged by using the formula (C-6) as follows, It is first desired to

evaluvate
+JRi-n2 9 2’_
z = f exp -8in” 6 ( cozt 0+2)" 1 &
2 2 om
R -n
Let
uz = (ncotf+ z)2
du = dz
For limits
whenz = l u =

ncot 8 -y 112-n2

n cot 9+\/§-2-n2

IRZ_ 2
+ l’lz-‘u2

S ™




and X becomes

n cot 6 +¥ B.z_n2

2 2
A= f exp -"’m qu du
2 2 2€'m
ncot 6-VR”-n
which can also be written
ncct9+JR2-n2 r 2 2
A= exp | -2 J0 4y
o | “m
ncotb‘-x/;ig-nz 8 o 9
agin” 6 u
- f exp |- 3 | du
20
o B m
Another substitution
2
v2 . Bin 6 “2
20
e J'fcm
2 e = ﬂv
W Tats | me C
\120 2
m
and for limits
u v
2 2
ncot9+JR -n sin § (ncot 0+ ,’Rz_nz) - v,
J'ng
n cot § - Y R%-n® uin 8 (ncotg-irgz-ni) =V
ﬁzoﬁ 2

and we again rewrite A as

V2
A=

g
m

8in 0

0

- \
fexp[-v2] dv - f exp[-—vzl av

1

v
(C-15)

i
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H the coeflicient 1a rawritten 2s

vy3 o Vex 0
m _ 2 X m
v e v] ‘vz
AR T g’ J W[°2}d‘1-§ JW[WZ]dV (C-18)
o o

By definitice the Error integral or Fehleriategral is given bty

X
b =L [ emp[f] & (C-17)
i |
(«]
Therefore
fﬁsm
A= g [0 - 40,y (C-18)
Fiaslly, returning to Equation (C-6)
1 R 2
a-= [¢¢) - etv)] exp | = | dn (C-19)
Won ‘:i; 1 & 20n2

Since this is not (& 8 form compatible with graphical or computer solution, the
following calculations are made.

Recall that
¢ —
g
v, = s‘f‘ - gn-zote«rfRz-nz)
vz Gm \

Factoring out an K gives

v, = Reta 6 & o 9+d1- (n/n)z) (w-20)
V2o
m
Let

g 2 - Kkr?

m
x = /R
dn = Rdx
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‘then
v, = j—;‘-}“—g (x cot 8 +J1-x2)
Similarly )
v, = sin ¢ (x.cot9-j1—x2)
vZ R
then \
ev,) - & %% (x oot 8¢ ¥ 1-x2) = ¢ @ -2,
@(vz) = & 31_;‘; (x oot 6 -Jl-xii = Gz(x) (C-22)
vai

Using /5 as previously defined, 8 = On/0p,, We can alzo write

. -
[

2 'l_ o2 R
= “202_)'_‘”rp 28%0 2 | 8%k
n P "m

2}
xp_ X
[2xﬁ2

e

= 3

and Equation (C-19) becomes

1 2
R X
a = [, &) - ¢, )] exp |- ‘i dx (C-28)
2»’27Nn _{ 1 Z ] [ 2K 62.-. -

Substitution of 7, = B Op, and Op,/R = VX into this coefficient completes tho
transformation and

1

- — f{é &) ~ ¢, x)] exp f- --“-"-2;-] dx iC-24)
VTR, 1 2 L 2xp?

a:

Thia is the formula quoted in the texi.
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A word or. symmetry, ), in the original solution of o, the iuitial integration 1ad
beens performed for the viriable n instead of m, he result would have been

+1 2 r :
N p? = ® -—992—-9- (m ] 41- 2)}
’ a0, VIF .‘f@ ;-"l;n% I.J‘E:‘o,,/n LA e J

- @ {;;ai/n(%n ot 6 -Jl-g)i)” dm (C~25)

if the choice had beep mada to lst

x = m/R
2,02

K= on/R
- ,

£ om’an

the result would have been

f
¢ %thﬂwﬁluxz)}

1
)
28veIm X 3 28° Kl

dx (C-26)

=% ngé (x cot 6 + l-xd)]

L

Comparing this with the results of Equations (C-21), 22), @), and (24}, it ia
readily seen that if the values of K and § in the firat solution are equal to the parameters
K and 5 1y ‘ne second solution, identic~l values of & will result. Thus we have &
cthice, shows in the table In the text, which permits eliminaiing the plotting of any

<1,

The abscissce are double scaled to give & versus both K and R where K is in
terms of whicnever 0 is the lesser, i.e.

R = oa/ﬂt
For erample, if
0n>om’ s = Tm

It iz hoped that enough data is presented in the curves of Figure 5 to permit good
engineering eatimates for any system requiring the QCEP methed of procedure,
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APPENDIX D

QCEP DERIVATIONS FOR A NORMAL PROBABILITY DISTRIBUTION OF
ERROR FOR THREE OBSERVERS

It i3 shown in Appendix J thet the joint probability density furstion for chree
observera is

[ 2 2
1 2 n m mA
fm,m) = ——————exp|-% oo o e -1}
y3ro 0 ? \o 2 02 %%,
am L n m

The total summation of the probablilities asscciated with each point m, n is the value
of o given by

1 N m2 | n2 m2 ™n
@ —2— [ xr{ B em dmdn
vimo o o 'm, (3/2)0 (3/2)@m (:3/2)0m 7 ©-2)
where
m, = f@=rcosb - V8 -of stn 6 D=3}
m, = {0}~ ncos 9x+v‘ R%.g% st Qx MD-4)
Let
2 _ n2
4= 2
(3/2}%
2 m"
v = ‘——"§
(3/2)(7}m

ince we can start the process by holding n ccnstant at some value, e.g., ng
R' v2
1 2. 2
) f fexp[-(u +v7 ~un)] %(8/2)c_0_ dudv (D-5)
v3no o nm
1
n m -R' v,

<

o

where
m,
v, =
v3/2 Om
.M
Vy =
V372 O’m
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or R

. v,
2
o
avg; fmn [ o[-0+ vPouy) qudy (D-6)
-R 71
ETE) cn
Therefore, holding u congtsnt
R! Yy
2 o
a = g f du f m[-cvz-uV)] { exp [ -u“] av D-17)
' v
-R 1
To 2valuste the first integral
va 2
A= [ exp [-(Faw)] av -8
v
1
proceed by completing square
\p) 2 2
A= [Teon{-0tuved - B)] o (D-9)
v _
= u2 Vo u 2
: = exp[*";] _{exp[-(' -5)] dv
' 1
Let
ke 9 m 2
F ' -2y
dy = dv
2 J2
M=ep[+T] [ epl-y?] ay M- 10)
Y1
Returning to @ and rewriting
s R y*
@ == [ %f‘xp[—yZ] dy exp[—%uz] du ©-11)
4vm -R' ¥y
; 108
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which by definition of & {y) is
1 R - 5
- zﬁ fn,[%'zl-éwl)] exp | - 7ul du ©-12)
Reversing the substitution process

a = %Jg J (e, - 8v, - 3] exp{ - 5/4 %) aa D-13)

-R'
vy = — m, = 1 -(n0089+4R2-n sin 6)
V372 o J§7”o
vy (@ cos 6 - \/Hz-uEz gin 6
v"ﬁ7§om
RI
a = %{%’ f [0{—-1——(n0059+JR2-n25m9)»%}
V372
-R' m
-d{———mcosf-VR -nzsm%—r}e@{-a/‘i)uz] du
y"§7'o ©-14)
And, azain for u,
= ;il-ytg é[ (nc056+432-n2 sinG) --—»--—-]
V32 o 2VE/2 o (D-15)
2
- ——1 {ncs -Jré_p? em9) exp-i L
2o\ "\!"7'0 (3/2)0 E7e LA
o .
a = — f'i? —L (nc059+-/}s§-nzsin6)- —
VIO, R | V32O /3/2 ¢
o ®J p-19)
735 2
-% ——-—-—(ncosB-.Rz-nzsin6>-— exp [_ 1 5| dn
V§/20’m 2\/572Gn C 20n
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ot Ap in the caze of four independent observations, and reducing ‘o computer size,

2
K =0 /R

x = /R
B

fl

o /o
n/m

The Fehklerintegral format becomes

) R (x o8 8 £ 1-x )Eine-— ] {D-17)
Y3/ZKR /32K B
1 b
ecomes
2/ e o 2BRVIT K
n2 b x2 :i
exp | - comes exp | --—r
[ 2 af] 2Kp°
and
dn = Radx

"'he whole expreasion is then

+1
\
a = —3 f ¢ L (xcosG+J1-xzsin9)-—-‘—x————
2BVETE V32K 2 ‘372K B
(D-18)
2
-'ﬁ[ L (xcosﬂ w/-xzslne) ] exp[-—z!——-ldx
J'éT"z.' 2ﬁ/2Kﬁ 2K 8°
To consider the symmetry, had we reversed tae order of solution, using
5, = f,(m) = mcos 6 ~JR%-m® atn 6
X x
n, = f,(m) = m cos Bx +VR%-m® ain Gx

g

I R LA S PRI

L v " aas anen P S -




and beld v constant while solving for u, a direct reversal of m for n and ¢ for m
would bave resulted as

R
= - ® 1 (m 0059+JR2-m2 ain 9) SN TT
evemo R | v3/2a o320
8 (D-18)
-$ 1 (m cos O-v/l@lz-m2 sin 0) T exp -—7"'2 dm
Y372 o 2/3/2 q 20
n m m
If
_ 2
K = crn /R
x = m/R
B =0 /0

the final result would be precisely the same as Squition (D-18), Thus this soiution
demonstrates the same symunetrical aspect as *" 2 soiution for four independent
observers; values of o need only be calculated for > 1,
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APPENDIX E

PROBABILITY DISTRIBUTION OF TIMING ERRORS FOR A PAIR OF
STATION OBSERVATIONS

The problem is to fin. the joini probability effect of a pair of time ¢! servaticns
where each cbservation is independent of the other and each has a normai distribution
of error,

<:-_'_r___‘-_r——l_—‘_'_'--_l-——''?E

S2

The two stations S; and Sy are measuring the time of arri~ ~ f the signature of
event, E. Assume the measurements are tj and tp at S; and & _.spectively. Assume
the difference between these two readings is

X =ty -t ' (E-1)
The probability distributions can then be expressed in terms of
pt,)andp(t,-x)

We wish to find the most prchable value of x and, more generally, the probability
distribution of x with respect to t ., These two events are assumed to be entirely in-
dependent of each other. Hence we are ccancerned with the product

Pty )P, -X) (E-2)

Since errors in measurements can be expressed as

i

t, = T, + Atl (E-3)

H

tp = T+ 4t E-4)

where Tj and Tg are the exact values at S; and S respectively, t; and (tl-x) can take
on all values within their error spectrum:.

Since we are dealing with the subtraction of those \ime readings, what is the
probabllity of subtracting a particular tj ¢jj) from a particular tpg4) resuiting in

i
!
1
|
:




The preduct of the probadilities of occurrenos of tpg and t13 , namely,
pit2g) pR11), or: Pixj) = p@R21) X p@2: - xj) is the answer. DBut there sre many
possibilities or inations or readings ¢3¢ and t1{ which will give this szme exact
'Xj. Since the occurrence of any one combination excludes the otaers, the iotal of all
possibilities and total probabilities is a summation process and the {otal

i) = Zl‘,'p & © &y - x,) €-5)

where | takee on all possibie values thet will result b: a particuiaer time difference, Xj.

Using & wall_-l=cog theorem of probability, this csa be generalized for all i by
the expression

pe) = [ p ey ¢y dt, (E-6)

=00

To define the in* rldual station probability densities let

1 [ “z'Tz)z
il =
&, -x-T)"
P t,-x) = o ¥ = 202—-—] (E-8)

It i¢ araumed there is no reascn why instrumentati~n, human engineering, etc.,
should result in & differing from ous station to the next.

Then 2 2
«o «»T)-ct-x-’m]
1 2 2 2 1
pix) = exp | - dt
‘.fao 21 0% [ 2 & J 2
(E-8)
To evaluate this integral let
8= Tz
b = T1+x
Then 5
- 1 f’ [ ty-8) - (tz"b)z ] & (E-10
plx: = exp | - -
on 02 00 202 2
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To simplify the exponent (and drop the subscript),

-t-0)° - 0% t2eoat- az-t2+2bt b

2 0 2 ¢

_ 2% +2 teeb) - @2 + b3

2

-1 el (2
it - .L“"[(oz

This can ba evuiuated from the integral form

2 a+b 2+b2\

w0 2 1
fexp{-l(Ax2+ZBx+C)] & = Vlgexp [?_K-_-A;QJ [A>0]

Let
A =
a+bh
B= .2T°
2 0%
C = 32+b2
2;

Then the integral equation (E-~12) becomes

(E-12)

1
—_ hencs A i8> 0
2 [ ]

(-2
%/% | = 1/0° 2
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To simpiify the exponent,

()" e

20" _ 2fa+aab+b® o® +pf
1/}7 ot 2 o*

. ._1? @2 + 2ub + b% - 24% - 2b%)
‘

i 2 2
= -- (@ -2ab+Db")
i

(&

and the integral equation (E-12) becomes

omwol- ()]

iQ then’ b ]
i &) = ——s X OVF a-bY’ (E-13
] : ° 21 o o \20 -
Replacing a and b gives,
) 1 Ty - Ty - x)? (E-14)
Bk) = - — -14
¥ ga»/"ir' 4
If we now define terms such that
M=T,-T, (E-15)
ax2 = 2 02 (E-18)
L. ! 1 1. -« X 2 ‘
. p&x) = exp | - "= = Dy -t (E-17)
o Jan 20
%
{
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therafore, the most probable velus of x is x = M for which p(x} 13 given at

M= T,-T, (E-18)
with & standard daviation
qx =y320

This fanction is depicted in Figure E-1 below. Nate thut while the symio! pix) is
vaed, the function (E-17) is a probability density function for which the
curr<nt trend is to use the notstion £(x).

pix)

=X #

Figure E-1, Graphical Results of p(x)
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EEP (ELLIPTICAL ERROR {3OBABILITY)

APPENDIX F

Lo

CALCULATIONS FOR A NORMAL ERKOR »ROBABILITY DISTEIBUTION
FOR FOUR ORSERVXRS

As stated in the text, there is nothing ivherently natural in this ‘ype of system
about a circular area of probable cccurrencs; and, as further rtated, ( we can break
free of QCEP compatibility requirements, we can erjoy distinct advanteges in irherent

elliptical contours of error,

To determine what the inherent contours really are, we shall pursue the educated
guess that it is possible to deter nine the probability of error directly from the time

domain.

As shown in Appendix E,

PX) =

2m
X

exp[_ .@_'_’Ef]

20
X

(F-1)

For the palr of statinrs whose timing error would result in deviations or
displacements in n, it i8 convenient to firat let

and

L>
-3
ll

= M-x

-

Likewise, displacements in m would result irom

Recall from the text that

1
74 S R
B Tm)

o2
.

Since it was also shown in the text that

n = I At
n n

m= 1 At
m m
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n g 2
X

a = fpr(m)p(n) dm dn

(F-2)

(F-3)

(F-5)
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it can be stated from the principal

aAt
p(m) = p@dt ) ——T— (F-3)
that
P (m)dm = p@t )dat (F-9)
P (m)dn = p(Atjdat (F-10)
Hence |
a= [ pr(m) p@)dmdn = | [ p@t )pidt)dAt dAt (F-11)
but substituting Equations (F-3) and (F-4)
at 2 +ag 2 ]
o = ;—gl—m— ffT exp [- ( tnz cxztm ) J dat  dAL (F-12)

Atyy, and Aty are independent of each other and can represent variables in the usual
orthogonal relationsiip for purposes of geometric analysis,

Consider Figure F-1 and the resulis of letting the magnitude of timing errors
from 0 to At and 0 to At be represented by

2 2

at 2aat? = s (F-13)

m

at gy

/
f
|/

N s
e o B

aty

Figure F-1. Ar Element of EEP Analysis in the Time Domain (Four Observers)
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Thie will convert Eguation (F-12) to

ff exp[— Saz ] dA (F-14)

27’0

where A is bounded by the circle of radius S,

The element of avea can be considered the ring (or the first integration)

dA = T sds
whence
S 2
_ 8
a = fexp - - 5 2T 8d s
ema 20
X
S ;2 o2
""J exp | - ) d(“ 2)
o 20 20
X X
r/ 2\1° 7 2 y
a = -|expl--2 = -lexp (--—5) -1
20 “ 20
X 0
Sz 7
o = 1-exp -— (F-15)
20‘( )

This 1s the prcbability of a fix lying within the area resulting from the probability
of error measuiements of Aty and Aty, it the time domain and LOP errors of n asd m
in the space domain. To pursue this further o is aiso related to the probability of
making LOP errore of

= At
n T'n tn

m- & At
m m

Recaliing from Equation (C-1) Appendiz O, that

(F- 16)

R
f
q
e
=
e
=]
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and that
g =¢ T
n X n <
g =0 T
m X 'm
then \
1 {7 Y (Sl | . (F-17)
o = ——— exp { - —= + —z m F.
o T T g2 7 7a o2\ar? or °
nmXx T
since P
nz m2 ATm“ ATn~ S2
+ = + = (F-18)
zrz T 2 2 2 2
n m

We have established that taking the points Aty and Aty from the circle S in the
time domain rz2gults in an elliptical figure in the space domain which is characterized
by the quantity

3
i n” . m2 or n2 m2 21 S2
3 g * 3 3t =3 " T3 T
c 2T 2T 20 20 U
X n m n m X

It must be remembered that v is the probability of making any combination of
timing errors, A4ty and Aty,, up to and including S, This resulis in a spatial ellipse
with the same preobability of a fix being anywhere within or on this ellipse. The fact
that n and m are oblique has had nothing to do with the analysis thus far. By letting

ey = LS (F-19)

my =TS (F-20)

the probability o associated with any ellipse

can be determined. !lcwaver, in plotting this ellipse, a zund m must be the true non-
orthogonal axes. Sample curves are presented in Figure F-2.
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Ox=0.1LS

4

! 2 3
S - U Sec

. r 52
Figure F-2, Sample Curves cf 1 - exp l— S
2 o L4
X

Thus far we have not placed any constraints cr speciai significance ou the quantity
S itself, other than in Equation (F-18). But this represents a specific - cne might
say natural ~- ellipse. Can we make concentric expansions and contractions to this
ellipse? To answer, it may help to introduce the idea of Sg for this "'natural’ ellipg2
such that

5, = V2 o (F-21)

!

representing that !imit of v Atn2 + Atm2 which is aiso the limit, or boundary, of the
ellipse

2 2
2 o
2 2
20 20
n m

To change to a differcnt ellipse of

% , m2 .
Xz 20n . )\2 2(.Tm2
equivalent to the time domain change of
5 = AS (F-22)

o

T NPT I e

X




and introducing thie idea into o gives
2,2

A So 1 1 nz m2
X ‘ A n m (¥-23)
but for the "natural' ellipse X = 1 and
.2 2
s, = 20, (F-24)
o = 17! =0.6322
resulting in the general formula
2
a = 1-e? (F-25)
with the spatial elliptical relations
nZ  m’
sty = 1 (F-26)
a- b
where
a =xa_ =AV20 = X201 (F-27)
) n X'n
b=xb =X2 0 _=x20T (F-28)
) m X' m
7 7 / = ) =] S
2/b or b/a Fn/Fm or I'm/]f‘n B [B> 1} (F-29)

Again note that these are pseudo- or crthogonai-elliptical quantities which must be
converted In accordance with the disciplines discussed in Appendix H to get the true
spatial picture.
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APPENDIX G

EEP CALCULATIONS FOR A NORMAL ERROR PROBABILITY DISTRIBUTION FOR
TRREE OBSERVERS

To determine what the inherent elliptical contours of error are, we shall pursue
the determination of error directly in the time domain. For the pair of stations whose
timing error would res:!t in deviations or dispiacements in n it was shown in Appendix
E that

2
fx) = exp | - iM——?{ -| (G-1)
o Vom 20 ° ]
X X
Further, for this pair of stations let
At = M-x = Ot + A4t (G-2)
n | ) C

as a simplevr representation of the net errcr for the time difference of a particular
pair of stations. Then

1 Z’\'tnz
f(at) = exp | - (G-3)
o VT o 2
X X
Likewise, displacemenis in m would result from Aty, with probability density
1 oty |
f (Atm) = —— &exp |- mz i (G-4)
oA 20 _l
X X
where
Atm = M-y = AtA +AtB \G-5)
As shown in Appendix J, the joirt probability density function is given by,
2/3(ut 2+t 2o A At ]
fAt, At ) = — oxp | - h__m_ o “’J (G-6)
n m 2 o P
Van o L X
X
and the summation of points within the ellipse
at? oAt At o
n + m_ n . G-7)

2 2", 2
<3/2)ox (3/2)0x \3/2)0x

WA AT




SN A

glvee a probability of joint error for

At
0 < Atn < N f
n - AL - t <G—8)
< utm <6 I-M }
which {s given by
. rAAtnz At 2 Ay At
S T | . m_ At dat
Pty Sty) = a 2 s ftexp (3/2)0 2 F(3/2) 02 (2/2)0 2 Pttty
VEE | O'X AT X X

(G-9)

To evaluate this integral refer to Figure G-1 which may be considered a sketch of
Equation (G-7;. It can be shown algebraically that this is equivalent to a skewed
ellipse onto axes Aty" and Atm' whose equation is given by

@t o
+ = 1 (G-10)
2 2
a b
Tiie major and minor axes a and b can be determined by
2 2
1 _ cos” ¢ sin®¢ 8in ¢ cos ¢
2 o 2 tovy 2 2
q (3/2)0x (3/ 2)(7x \3/?..)0‘x
_lz - sin¢gos ¢ (G-11)
/
a (31 Z}UX
.  B/2c?
o =] X
“ 1 -sin ¢ coa ¢
Similarly, 9
.  6/30
2
b 1 +sin ¢ cos ¢ (G-12)
¢ is determined by
_ 3,2 3 _2 3,2 3_2
¢ = arc tan <2 o -20x) + ‘/(Zox -20x>+ 1]
= arctanl
= 45°
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Figure G-1.

Thus

Elemental Area, dA

N

An Element of EEP Analysis in the Time Domain

(Three Observers)

3.2
=
a2=2x =302
i X
l-3
3 2
—.U 5
b2=2x1 =ox..
+ =
1 2
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Returning; to Equation (G-10), ike skewed ellipse becomes

0 2 2
\Atn') (Atn;)
ot — = ) (G-13)
30 c
x X

Using % ab for the area of an ellipse, the elemental area dA of the skewed eilipse
on LXes Atn’ , 8t' is determined by
dA = 7 .ﬁtN' Atmf -;fr(At‘ dAt ') (At -dAt ")
1G-14)
dA

t ) 4 2 ¥ _ A
T (A X dAtm' +uLM dAtn' dAtn' dAtm’)

To reduce the _miegration from s Jdouble to a siagle summation, we evaluate, in effect,

~M
|(At£')2 (Atmv)“’
B B N b B
y"ﬂ"rro pe x
for
At ! '
0< AL "<ty
(G-16)
: ] 1
OS-Atm SAtM

The exponent of e is the constant value of any peint on the elliptical ring dA as

dAty' and dAty,' approach zero. But the total area, and its associated joint density
function, can be considered a concentric series of such rings; as the maxima Aty'
and Atys' move from zero to A and B. For example, we have the relationship

tl
Aty

A
At v T F® (G-17)
M B

This permits us to generalize Fquatior (G-14)

44 = (é Aty dat =+§_Ath dat - dat 1 dat ) (G-18)
But from Equation (G-13)
é - vr§ E— - -—1—-
2] A 73
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ivi
giving ;

dA = 7 [V3 At dat
M m 3

i’ne integral haa now become

a:_....__}_.__._ fexp-
ol
X
T
o - [ exp-
Sral A
X

J (At '}2 (a
n
— +

-

-

3¢ o
X

+ L At 1 dAt ' - dAtL ' dat ') (G-19)
V3 N n n m

1 1 t o 3 '
X (;FJ AtM' dAtm' + = AtN dAtm dAtm' aAtn>

we may write

'21 At 1

( )
o = _,...1_.__. fexp - Né - X N
2 30 v3
v"B'o‘{

The last ‘ermn may also be writien

2
At !
fom |- 4
(0]
X

lim Oty
dAtN' —>0 fexp - 3
X
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be a general ellipse whose value is constant for any given ellipse.
matter whereon any given ellipse an evaluation is performed, i.e. ’
At '=0, and At ' =0, At t= AtM are valid maximum points on the ellipber\S and

0t f\/'3 exp |- 5

-f exp[-s"Jast ' dae "

dAtm' dAtn'

It is obvious that the expression ip the bracket is a finite integrai.

r
dAtm' dAtn = 0

(G-20)
Let
@t n? (ar_)?
Y + m - 82 (G-21)
2 2
30 g
X X

Since it wﬂl not
At ' = At

¢ 1 2
Aty Max

o
X

(G-~22}

Hence in the limit

(G-23)

AtM' dAtm




At 1 2
{ '
1 A 3 N Max d Atn
a=-— ] —ew |- 2 P
V3 (o 2V 30 30
X X
(Aty,")" At
1 fb'ﬁe LAY Y
v 3 eXP | - g 2 5 2
0 X X
(3-24)
The limits a' and b' of AtM' and ALN' are discussed later. Then
2 a' 2 b!
@ty (Aty')
1 N'M 1 M
a = -5 exp ————zix -5 €xp -——2-—85 (G-25)
3 G’X c
o X o
2 « i 2
1]
o =-l-1-exp[-:-(a—%] +é—1-exp l'--@:)?]
30 C
X X
2 2
a = 1_l exp r_la_'l + exp _ oY) \ (G-2€)
2 30 2 o 2
L 39 .y

It is interesting to note that for snecial cases of a zero ellipse, and an all-inclusive
infinite ellipse, the limits and prcbability would be

0o
=)

a' = b' = 0, o

I
s

al = b' = o, o
which chechs our knov;/ledge of boundary conditions.

Since, as has been pointed out for the joint probability density functions of this
gystem, '
) = 309’

{a

we have finally

(0
X

12 12
(4] =1-exp[-@l§]=1-exp[-%] {G-27)
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or, more generally, for any point on the general ellipse S where

ne 2 2 2
2 . At," s At o s e
2 2 2 2" 2
c c /
3 ; . .':3/20x 3,20x 3/20x
(G-28)
2
o = l-e‘s

and the poirts a' and b' are the special ""max'' values of AtN' and At,w' which give
the values of S. ’

When S is unity we have the natural standard deviation ellipse. The probability
that the position fix lies within or on thir ellipse is then

o = 1-e"1 = 63.22%

For concentric e.lipses for other values of S, the eiliptical equation can be considered
as

2 2 2 2
! At t
(At ') (At " Atn Atm m & "
Ll ===t 55 =73 7t 3 ) ) (G-29)
S“3¢ S“a S“3/20 §“3/20 S“3/2¢0
X X X X X
where
At "' = SAt !
£} n
At ''= SAt '
m m

and the unprimed Atp, Aty are also chavged by the factor S. Thus we may consider
any size S ellipse we wish.

To relate this situation to the space domain it is recalled that

n =4 T
nn
m=A4 T
m m
¢ =T o
n n x
c =T o
m m X

Utilizing these quantities in Equation (G-29) gives the result

2 2 9
n + m mn

i 5 - = 8 (G-30)
3,20 3/2 0 3/20_©
n m mn
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The values of a and b winich were used in Appendix I to derive the transforms are
then given by

a = SV3/2 On
b = SV3/22
m

These are pseudo- or orthogonal-elliptical quantities which must be transfoc:med in
accordance with Appendix I to get the true spatial picture.

G sl

T T RN

ot
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APPENDIX H
DERIVATION OF THE TRUE ELLIPSE TRANSFORMS FOR FOUR GBSERVERS

The general problem is to derive an expression for the true ellipse in terme of
its oblique axes such that a complete picture of the spatial probability contours is
obizined.

it is shown in Appendix A that the valr> of the distance R from a fix point F to any
displaced point P! ig given by

9
-1 (m2 +n% - 2 mn cos Gx) {H-1)

where
& = crossing angle of the LOP's

m = error or displacement of the LOF for the station pair AB
measured along the line m at right angle to ry, .

n = error displacement of the LOP for the statior pair BC
measured along the line n at right angles to ry .

It is also shown in Appendix F, Equation (F-26), that there exists an elliptical
mathematical relation of a constant contour of probability such that
| n2 m2
Z+5 = (H-2)

a2 b2

The question is: '"Whe1 the values of n and m which satiefy this equation are
substituted into equation H-1, can we obtain the "max" and ""min" of the resulting R,
and what are these values?"

To answer the first part of the question, the variations of R are studied in an
example.

First m ig veplaced in Ecuation (H-2) by

m=b 1-% (H-3)
a
giving
2 1 2. .2 o’ n
R® = —5—- n“ +b 1 -5 )-2nbqf1 - =5 cos 6 {H-4)
sin” 0 \ a a x
X
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1

For the example chosen

R = fSnz-S.SnJl-«n/a-ra

The results of this calcuiation are shown in Figure H-1,

mw/nz(l-bz/az)+b2-2'cnv1—n /2° cos & (H-5)

This demonstrates that

there is a value ~f R = f(n) which in the usual orthogonal sense will contain a2 maximum

and minimwm,

R

in
o |

Figure H-1, A Plot of an Example of Calculating R

to a Point on the (Oblique) Ellipse
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To derive the genersl expressicn for all maximum and minimum, we return to
Cquation (H-4). By insptction of the elliipgse of Equation (H-2) projected onto the
oblique system n, m (as 1 Figure 6) it is seen that Ryyax and Rmin are obtained when i
dR = 0. But eince dn i8 irdependent of dR, if dR is zero

-dR = 0 %
dn
From equation (H-5), /2 g
F_T -1 5
dB _ . 1 n2+b21~52-\-2nb 1-97-0086
dn sin § 2 b2/ bz
2 2 2
2n-2§-§n-2b = +‘f1-3§ cos 6
a 2 a d 3
L B -2 |
a 41 - '—2- 3
: %
3
Equating to zero and solving for nz proceeds as follows i

b2 b n2 n2
D-—7n+= —co8 0-bWi-—5 cos8 8 =0

a2 a . E a'2
T2
a
4 2
2 b 2
n(--l-)-z-)+-——n——cose -b 1-% cos =0
a ul a
At -2
’ \/ 5
_ a

2 2
b\ b 2 n _
(1--—2-/+;§n cos Gx-b(i——g)cosex-()

a

2/ 2
n 1-%(‘.-% +2—%cos€n2-b0089=0
a a a

b2 >
le—1i = bcose-zb,aacosen

a

135




PSS

2 ot

= e e

2 2 2 2
nz(l-%) (1-%) =b2 m29-4§§w529n2+4§-4-00529n4

4 2 2 2
Qz--‘-‘-z-)(l-% =4b—4-00829n4-4%c0829n2+b200829
a a a a

9
2 ° 4y 2 2
an-%) -9-5\1*%) =ﬁ%coazen‘i-4%c0326n2+b200329
a a a a a

2 pA
4244:052 9n4+-%_v (- %) o - (I-E:) n2-4§-; cos® 0 n% +b% cos? =0
£ a a a a“

) ' 2 2
2 2 4 2 2
4%—005294-(1--'22—) ]32-- [4%c0329+(1-?—2-> :|x12+b2cos2
g

8 a

=0

2

2 2 2\ ©
' 'Ef)] n4-[49’2—cr,526+(1-§§> ]n2+b2c032 =9
a a a

1
Z 102

2 4
14 2, b~ cos” ¢ -0
- b2 2 2,2
4—2-005 8+ |1-b%/a
a
/ 4 b%/a" cor 8
“\'1‘ 5o 2 PR
2 4b"/a% cos” 0+ (1 - b"/a”)
n = 3
2/aZ
ne 1,1 [ i
) - 2,22 H-6
2 1+Q"b/§:—}-—— H0

4 b2/ az cos2 8
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S - m——. =5 R
For computation purposes, let
2,2 N
_1-b%a _ a/k-b/r
X = 3b/acos ¥ 2cos?d #-7) %
Then
2 €
2 - % 1 *‘/1 - _l_.é) (H-8)
a 1+x %
&
but from Equation (H-2)
m—z =] 1 - E?:
.2 2
D a

-r—nj-= 1__1.(1 - X
b 2 4 1+x2
2 /
mo-l 11" 1-— ®-9)
b “ 1+x

From Equations (H-8 and H-9). the values of m and n which give Ryygx and Rmin

are
p=elyregr-—2 5 (H-10)
V2 1+x
m=s2 ‘fﬁ 1--—-:[—--E (H-11)
V2 1+x

Insertion of these quantities into Equation (H-1) presents a problem in the
selection of polarity for the term mn cos 6x. This has been solved by graphical
analysis which shows that inthe determination of Rmax, m and n are always of opposite
polarity regardless of whether the pseudo-ellipse is plotted with its major axie olons-
m or n, Similarly, graphical analysis shows that for the point on the true ellipse
which represents Rpmin m and n are of the same polarity.
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Further analysis with regard to the selection of polarity shows that when a > b,
Rmax {8 obtained from the combination of

2

n 1

—_— = - f] 4+
(g )
%.: (-‘,1 1
b 1+x/
b>

2, Rmax is obtained from the combination of

=% 1-‘/1- 1 \
a. 1+x

2 ~
m _ 1 1
- 5(’-*1}1' 2)
b \ v -"'._,

Thue the formulas for the true major and minor axes become!

o

Conversely when

t"
(S

Fora>b

§
2 1 2 1 2 1
R =—20 14 1+"1- +b° (1 ~gft - ———
MAX 2 ain” 6 % ( 1+x° J- ;+x2>
+2ab (1“}1- 1 2) 11‘/1- 1 z)cose
1+x 1+x

Simplification of the last term reduces to

o) ()

Za.bcosﬂ (

21119

(H-12)
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Similarly, fora>b

RZ.,m=_—1§_" a2 (1. ,1_ 1 2) 12 (14 ,1- 12>
(1-13)
_2abcos 6
Ji. 2
andforb> a
R P I 1—‘/1- +b% 1 +gf1 -
max 25111“9% ( 1+x‘°‘> (V )
(H-14)
: +Zabc036
\ —_—
V1 +x
i S O WIRCY AR s w
Rmin - ] a 1+‘I1-—-— —-2 +h ‘1__}_ >
. 2gin" 6 \ ¥V 1448 ¥ 1+x}
H-15)
= _28bcos\9
1+x2

If the angle of shift of the pseudjo-major axis is - which is measured from that
axis, m or n, to the true major x-axis, this angle can be calculated from the zbove
information. Basicaily we are dealing with: for a > b,

The n value of R
cos Y = max (H-16)

2
cog” ¢ =
1 32{1+ /1__:|2> +bz<1_’1_ I\ , 2abcos
2 sin 6 1+x 1+ny,  [14,2
which reduces to ’
ete? 0 1 +gfi -1
cosz' = 1+ x - (H-17)
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Simiisrly forb> a

ain” 9(14-%’1-——}- )
2,2 1 . 1 2a/b cos 0
a’/b 1"1 "‘"‘T)* (1 h#x - +
( l+x 1+312 /1_“!2

Briefly, regarding symmetry, if we had started the origianal sclution in terms of

(H-15)

the resulting solution would have given

_x_xﬁg; i* '1_ & a%/b% cos” 6 \
b2 2 43?‘ 29 + /,2\
b—gcos % l1-.18 ;’
Then let
o a l-asz2 _ b/a -a/b
2 a/b cos 6 2 cos 6
which would become
g
m 11 1
= = 1t‘ﬁ-—-—
;2— 2( 1+y2>
From this

2
n _ m
-5 =1 T (1*\/ >
a

“but we also have the dR/dn = ¢ derivation that

2 4
31‘2’='21‘ legl -——
a V 1+x
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Therefore

)

Continuing this derivation gives

X = &y

which for x = -y substantiztes the conditioh obtained in the devivations

x e
2 cus Ox

(s/b - b/a)

1 b &, _ 1 1
Y =Tt @B T T Twey (50

It is desirable to provide transforms for the major and minor axes such that,
given values a, b, and &, the truz veluee of the major aad minor axes a2nd the
orientation of these axes can be determined directly and simply. Such a trangform
would be the ratio of valuea of the true major axis {o the pseudomajor axis 2 er b.
Since the original maximum axis value could be 8 or b, we will call this R, and
the true value, R'ynex. The transform (squared) then beoomes

fora>h
o 2 @ 2 ] 2
max | _ glax - 12 14+ ’1__,}__2 9‘5 1. ’
max a 2 sin 9i 1+x a“\ 1+x/
(H~19)

2b/e cos 6
+ X

J 2

J1+x

and forb > a

2 2
\ (R'max) - 1 a2 ‘I 1- ____\\ " (1 i ,1 .
R ) B 2 stn’ 6 V 1+ X 1+ x2

mex

2a/b coa 6

o
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It can be seen by inspection of these formulas that if the b/a of Equation (H-19)
equals the 8/b of Equation (H-20), then the x of Equation (H-20) will be the negative
of the x of Equation (H-19), dut the squares of these two will be equal

2 2
(Xy_o0) = G Xy 19

Hence the transform functions are equal for given values of a/b, b/a, and 8. X is
mosi convenient in visualizing these transformations to picture the pseudoellipse 18
having ite major axis coincident witk the corresponding axis in the oblique system m,
n. Thoe & a > b, we would draw the ellipse to be transfermed with n as the major
axis, Likewisze if b > a, m would be considered the major axis of the pseudoellipse.
By sinitlsr development the square of the minor axis transforms becomes

mm\ mm) L }_._(:-.!_1_:__\ G 1+x>

b Zsin‘iﬂsz\ 1+X/
(H-21)
‘a/bccasl?
w/1+x§
and forb> a
2 2
R min =(R'min) - 1 “‘JT_' 1 +£ W
\ min az 281n29 1~l~x2 a2 l-i-x2

(H-22)
2b/ a cos 0

=

ard since the same conditions prevail with respect to the x2 values, the symmetrical
<quality of these two equations is also establigshed.

Returning to the determination of i/ , it can be seen by comparing E uations
(H-17) and (H-19) that

1 +q/1 - )
+
coszt;/ = D ] (H-23)
2 (Major Axis XFrm)
And finally,
T gt L
2\~ - 1+ 2‘) (H-24)
cos Yy = XF X
max
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APPENDIX 1
DERIVATION OF THE TRUE ELLIPSE TRANSFORMS FOF. THREE OBSERVERS

As in the case of four observers, this 4er.vation starts with the value of R as
given by equation (F-26)

R? =

+— (m” +n° - 2mn cos 6) d-1)
sin” 8

X
It is shown in Appendix J that there exists an elliptical, mathematical relationship of

a constant contour of probability

2 2 ’
D m mn= )
AR R (a-2)
a 4]

that is

n’ =& (m4 Y - 3m? 1-3)

giving, by substitution,

- [ (o o) - S

st 8

where
C = cos 8
X

R = -Si—-g‘lm +-2- (mtﬁ - 3m ’ -mxy @£V4b!-3m:>c I1-5)

Agezin proceeding as in the case of independent obeervers, Ry, ax and Rpyjp sre
obtained when dR = 0. Since dn or dm is independent of AR, we are alsc solving for

R _ 1. . o-1/2 a’ A 6m )

=— =+ (I sin 6) [2m+—-—><2(m+ 4b” - Im") {1 - ——

m 2 4 ( 2VabZ - 3m?/
)c--(m+J4b -3m>c]

j= )

{1-6)

a
m+—il+
b( 2J4b2 3m>
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b

Solving for m proceads as follows.
To reduce repetitics, let x = b2 - 5m°
Then, from equation 1-8),

2
a . 3m & 3m\ -
2m+2b2 (n.+x)(1——-x!,—mb( x}C~b(m+x)C-0 a-m

2
3m a ] a
2m + 1-—-—) (m+x)-me -R{m+x)C =
( [2b2 b b
2

2mx + (x-3m)l|:-a—2 (m + x) - m%C]-%C(mx+x2) =
2b

2
2mx+——(mx+x)--—me-3—-(m + mx) + 3§Cm2-—(‘(mx+x) =
2b 2b
Z 2 2
2mx+~9-—2-mx+—a-2x2-%me-g% mg—-ga—mx+3b0m2
2b 2b b b
a 8 2 _
-mex-be =0
2 2 2
x(2m+%m-§0m-%ggm—:acm)+xz/~a—2-§>+
b b % \2b
2
2/, a 3a” \_
m é‘scwi—z =0
b
2 2
xm(z-2pC-2 )40 (A__24), 2hao 3a%)_
b 2 2 b b 2,2
b b b
2 2 2
xm 2-2%0-% x2-4—2-§c>-3m2-—20-~§c =0
b b /
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Replacing 12 gives

e 2 2 82
xm(Z-Z%C-\-% + ib” - 6m°) =5
] b 2b

0

2 5
xm(z— 230-3—)- (@m” - ZbZ)(E‘;- 58
2

b bZ

Squaring gives

I
xzmz(z-z:gc-é-z-)
b

Again replacing x2

(4b? - 3m%) (2 -2

b
Let
a2
4 a a"
/2‘-2‘6(3-—5
1“2-__ b
82 &
= -2:C
(’
bH b
_ 2
v=m
Then

@b? - 3v)° = kPvab” - 3v)
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g
[y~
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™~
o
]
(4]
]
[\
A

ol

b

C)

) -0

=90

(1-8)

(1-9)

1-1%)

1-11)

(1-12}

(1-13)




ab® - 126%0 + ov? = 4kbly - k5 2

33 + KWV - 4b2(3 + KDy + 4bd = 0

4
- 4b2v + A0

34»k2

)
4l & !mb“ - 48—3’—3
2 3+k

v=m =

6
bzli: 1- 1 5 (I-14)
1+k§

Finally to get this into a form comparable to the four-observer case, let

3v2

]

2
m

"
wies

3T o \¢2 Gplo)
_E-ZBC)

m2=§-b21i,1- ‘2) (I-16)
1+£°

as the conrdinater of points on the true ellipse which are the end puints of the major
and minor axes.

giving

"he n coordinates are obtained directly from cousiderations of symmetry. If
initiai substitution in equation (I-6) had been made for m instead of n, and the equation

dR _
an - °
solved for n, the resulting equations are the same as those above if, also, the following
repiacements are made
m—3n
n—--$m
a—»hb

b g
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Then
. N\
n2 =§12 1¢‘/1- 1 3
1+¢
where
2
2-22¢c-%
2 a 82
& =73 P (L8} i
b°_,bo
3(32 “a
For a quick demonstration of the correctress of ihese eguations, consider the speciail i
case of

8 = 90° (i.e., orthogonal axes)

b a=b
2

2 @-0-1° 1
T 2 3
1-0)

——h dr i

_2,2,,1
m —sb(ltz)

’ —iiandtb

V3

g
'

and -

o
"
W
s
>~
=]
B
&

Remembering that when a = b,

L is a skewed eilipse of 45° given by

'2 '2
(m)_ @) _, {1-19)

)2 @)’
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e

wiere
. .
®)° = — —
cos” 45° , cos8 45° sin 450 cos 45°
b2 b2 b
- 1 a2
R U N
9?2 2b
b =V2)h
and
@)? = 1 _2,2
1 .1 1 3
2t 3+t
2a 2a 2a
a' = -g-a

(1-20)

1-22)

(1-23)

These vxlues are sihown on the following sketch which illustrates and verifies the

srecial case. :

Another, more typical, example was worked out analytically and then checked with

graphical solution. The parameters selected ware

g =0.25

n

o =0.6

m

s =1
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a= sJ%—’n 0.306

)

b= ego = 0.735
m
Wa then wish to find the locus of the points
2 2
m n mn -
i = =1
(0.735)° (0.306)° (0.735X 0.306)

onto the oblique axes m, n, fx. The graphical solution is shown in Figure I-1.
g‘om the relstionship

plotted values were obtained
=& (m *«‘/4&)2 - 3m%)

The coordinates from this graph for the terminus of R, andR . are
for Rmax: m = 0.780, n = 0.043
= 0.325, n = 0.348

forR_.: m
min
To solve for the coordinates analyticaily

-g_ = 0.4186, co8 20° = 0.94
 2-2%0.416x0.94-0.173 _ _1.71
3

V3 (0.173 - 2% 0.416 X 0.94)

£2 = 0.975

2 _ 2.2 1 _ 2o
m® = 3b (1‘*\/1“'—"'_1 +0.975>- 279,705 (1 + 0.703)

m = 1.063b, 0.445b

m = 0.782, 0.327

Likewise, for n
?—“XZ 4% 0.94-5 186
- ._- . 2 = -3¢82

(: =
V3 (5.76 - 2X 2.4% 0.94)
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Figure I-1. An Example of an EEP Problem on the Oblique Axis-
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3

¢2 = 14.6 :

z

\ 2, 5 ¢

2_2.2 -‘f 1 )-2 20130.95 3

n =ga 64» 1 15.6/ 3X 0.3067(1 + 0.968) 5

¥

n=0,146a, 1.145a §

g

n = 0.0447, 0.350 %

And the coordinates become %
1

Rmax: m = 0.782, n = 0.0447 §
Rmin: m = 0.327, n = 0.350 i

e

Therefore, we are doaling with something less than 2% error, including graphical
and analyticgl_'calculations, and the formulas are verified for this sxample.

Providing trarsforms for the true values cof the major and minor axee is more
complicated than for the previous case. ¥ irst, -the guantities a, b no longer represont
the major and minor axee cf the pseudo~orthegonal ellipse. They still, however,
represent convenient quartities for determining the desired transforms.

It R

ﬁ Returning to the general form of the radial vector to the true ellipse, and substi-
tuting the derived values for the true ccordinctes m, n, gives

2 1 2.2 1 2 2 1
R™ = = b7 {1 £4f1 - =j+sa (15: 1= >*
sin? g_|° ( Y 1+£2> NV L
:&%ab ltJ -——-I—;z-j (1*.1;,1— I 2\0@89}( (1-24)
14 &% 1+¢%)

Defining the transforms

nhu=§m>m=§m>q (-25)
 QMm=%u>m=§m>m {I-26)

The neede 1 relationships R/a and R/b are determined from

1
4dL




i
2 P 2/ n{r h
_13.2.: E; %%%ilti‘l- }9\-&3’1*’;- ‘,,)g
a”  sin® 8|7 a% \ ¥ 1+¢%/ "\ ¥ o1
3 }
me‘ﬁl K
IS 1By (P YOS WA PO AR ] a-27)
01 BT A YT —

- 3 Y
a%g\/ézQI—‘ ! 5(1-17%’1- N @-28)

Since the key factors to these solutiona arz the qus~iities

,"l- - am‘fi- ‘:
1+£2 1+;’:N

and since one abscissa csn provide either a/b of £ ox b/a of {, FigureI-2is s
representation of either radical. The selection of the parameter Ay gives samples
through the crossing angie spectrum,

The maxima (of unity value) ars obtained for

b/a or a/b = 2C (2 cos )

The minima (of zere valus) are obtained for

b/a or a/b = -C +ch +2

The case for § = 60° is very interesting and perhaps even ansmealoua. The fuil sig-
nificance of this curve has not been explored for this document excert that it passed
aul validity or applicaticn tests developed during this writing.

The next task is that of making the various polariiy decisione associated with ihe
radicals. There are two distinct decisions to be made: (1} the pclarity of the radical
in determining the value of the coordinates, and (2) the relaiive vslus of the coordinatss
themselves with respect to each other. Thiz is a much more difficuit task than for the
independent cz229 of only one radical value per a. b, c.

The tools ard criteria for making these decisions were

a. FigureI-3
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a/b >2C >|
MEaN Some

b/a > 2¢>1

man Same

| Opposite

! Case
8> 60°

Cannot Contain R max
for © > 60°

Figure I-3. Gecometrical Polarity Decision Criteria
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4

2
b. _mz_+
a

0o

n—-g\n. = 1l
b2 ab

¢. Some trial and error

The results are tabuiated in Talle I-1 wnich seemed to be about the best, though
by no means the only, way of depicting these polarity decisions. Since the quantities

2C and -C +€Cz+2

can both be greater or less than one, all possible cases are charted. The idea used

in deriving the chart was to find a starting point for which all the factors were known
and then reason what must happen from then oa. (The author is sure there is a ~urer
mathematical or classical way of doing this, but the idea was successful.) The starting
point used is b = a. Examination of the eiliptical equation shows that the choice of
radical polarities is limitad to the extent that they must be the same for m and n at

b =a. The next significart factor, obtained by examining Table I-1, is that 8, = 60°

is a dividing pein: for these polarities and the cases of f; > 60° must be examined
separately from ), < 60°. Firally, the separation of m and n for XFMax and XFMin

is obtained by almost any test poinis within the regions specified.

Having thus obtained a complete initial set of polarities for the radicals at b = a,
the rest i the intelligent guess that as '

vl-_____l__
1+ (2 or t?)

-C+QC +2,

the polurity associated with the radical must reverse ag a/b and b/a are varied
through their interlocked values.

goes through zero at

The significant factor in determining the polarities of m and n relative to each
other is the value 2C, for at a/b or b/a = 2C, m or n are, respectively, zero. This
would be intuitively the point at which a coordinate's polarity would change. Verifica-
tion of this change, and determination of the manner in which the polarities changed,
were accomplished by graphical analysis, with the results shown in Table I-2. It
should be remembered that as far as the transform formulas are concerned, we need
know only whether the relative polarities are the same or opposite.

Determination of the ang’e of major uxis shift \ is performed in a manner similar
to the arnalysis for four observers. It proceeds as follows
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Forb>a

2
[value of m(for R, 7]
' 2

1-&}‘-‘

bXF '

2/311{
I+§

coszil/

or

‘ﬁ/s(jt‘fi- I 2’
cos Y = 1+4

XF'Ma:v(

where the nolarity of the radicel is determized in the same manner (using Table I-1)
as for the XFMax. The angle ¢ would then be measured from the m axis.

Similarly, fora >b
‘/2/3/1 1"1- o >
cos I = \ 1+¢
XFMax

and Y would be measured from the n axis.
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TABLE I-1
POLARITY DECISION CRITERIA FOR THE RADICAL
DETERMINATION OF RADICAL POLARITY

( S -C+m)
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e APPENDIX J

DERIVATION C¥ THE JOINT PROBABILITY DENSITY FUNCTION
FOR TERSTE OBSERVERS

The basic problem is to find the true degree of dependency or correlation between
the time difference pairs which have one observer ir common. Suppose observer B
were the center or common ohsarver. Further, for notation, let the errors or devia-

tions from true time readings be

T, -t, = At, (3-1)
T - tg = Aty (3-2)
T~ to = A, (J-3)

where Ta, Tp and T¢ are the true instantaneous values of time of arrival and {3,
tg, tc are the observed instantaneous values.

Figure J-1 presents one exampl» of a possible time coafiguration with probability
density functions sketched for sazh observer. The probability that A has made an
error of magnitude between Aty and ATy +dAt, is

1 ATAz,
P(At,) = par—Tad e dat, (3-4)
A A
Similarly,
Aty = — | ATBZ] e
p(btg) = o i~ exp [2082 J dat, {3-5)
p(At.) = exp - ﬁ'&; dat (J-6)
c O Ver ] 20,° &
Defining the quantities AtN and AtM as
Aty = (T, - Tg) - (t, - t) (J-7)
Aty = (T - T - (g - t) (J-8)

the goal of this derivation is to detevmine the joint probability function f(AtN, AtM).
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Tr & &

T Tung
8 c '

aTy,

<

Figure J-1. An Example of Probebility Distributions for Three Cbsarvers
Subetitut 2g from equations {(J-1) and (J-2)

Aty = At, - Aty (J-9)
Aty = bty - At (3-10)
and, finally,
At, = Aty + Aty (J-11)
Aty = Aty - Aty (J-12)

Considerable confusion and discussion can arise on the relative polarities of these
quantitiea and, as indicated in Figure J-1, the pessibilities include all combinstions
of polarities of ihe three quantities. Since we are concerned only with Atp2 and Atcz,
thr se combinations can all be reduced to two: Atp is either siding or opprosing the

¢ antities Aty. Aty

The next important probabilistic coacept is, that to obtain a specific Aty and Atyy,

we must glso obtain specific values for Aty, Atg, and Atc. The probability of doing
this is the probability of obtaining these three errors simultaneously, and

P(Aty, Aty) = P(At,) P(Aty) p(Atc) (3-13)

where Aty , Atg and At represent those qusatities necessary to obtain a desired
AtN and tM'

Substituting from equations (J-4), (J-5), and (J-6)

2 2 2
piAt., At ) = 1 exp| - At +AtB +Atc dAt,dAt dAt . (J-14)
Aty Aty OAGBGC(2'103'/2 20A2 2032 chz adatgdat,
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It iz assumed at this puint that charactsristics of the three observers are so nearly
aliks that

UA = O'B = UC =g
and
[ (a1, %+ A% + At 2\]
p(& At ) = exp dAt, dAt dAt (J-15)
b Aty JE7; 202 f9Atgdat,

Now, substituting for At A and Atc,

AtE + (At = A )+(A sat )]
p(Aty, At = -——1—75 exp - [ tB 5 M* - | daeydatgdat
oSem 20 i)

To obtain the total probability for the occurrence of a given Aty and Aty;, we must
add the probabilities for all the mutually exclusive co‘lectively exbaustive ways in
which these Aty, Aty can be obtained. This is done by allowing Atg to successively
take on all possible values from -oo to +oo,

.Thus

P(Aty, Aty = 57

dAt, dat, @ [Ath + (ot + At + (At + MB)Z]
exp -
oPemd/? tw

: dA 3-17)
207 B

Since 4t,, Alg and At are independent and since, for example, Atp and Atp are
kept sepsrated by Aty,

45° ATg

?
l
|
{
—ejaty |-
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P 25N

and we can conclude
dAtA = dAtB = dAtC = dAt

Equation (J-17) can be rewritten as

? 2 2
AL, At 1 - Btp” + (Bt  At)” + (At & Aty) } )
( dAt)z = 03(”;3/2 L, exp {' 02 dat, (5-18)

I we then define the joint probability density function as

P(Aty, Aty)

the resuit is
2 2
) w [at,® + (At + At) + (aty, + 6ty 'l
f(At,, At ) = . axp - dat., (3-290)
St Bt T B 7 /. i > | datg

For those interested in a more classical verification of this relationship, the problem
is one of

given P(x%, y, z)
~ ifind P'u, v)
where x, y, snd z are independent varisnbles and u and v are some functions as
u=u(x, y, z)andv = v(x, y, 2) (J-21)

For any particular u, v there is a curve in %, y, z space. The probability of being

in the increments! area (u + du - u) by (v + dv - v) is also the prcbability of being in
the volume x, y, z which i{s formed by the locus ¢ u(x, y, z) and vi{x, y, z) for each
given u, v. If the curve is single-valued with respect to the z axis,for example, we

can integrate cver z to find the total probability of being in the volume. To find these
curves as a function of z, the equation (J-21) must be solved to give

x = x(u, v, 2) (J-22)
y = yly, v. 2) (J-23)
162
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Then

Pdudv = P{x(u, v, 2). ¥, v, 2), z]da
Al

where, using vectc ™ notation,

ds =

and jiy, By, Vy, V; are unit 7ectors. When the cross product is performed, this

reduces to
r_ 9x8y Bx®
dA. = BTudy” WF!E dudv
Therefore

= [Fxt, v, z), y(u, v, 2), 2]

8x Ix 8
B 5’ - Sy gl
where P' is the desired probability density function.

For the exampie at hand

el

where

X = AtN'!-At,B

vy = ALM+AtB

z=AtB

u=(x-z)= AtN+AtB-AtB=AtN

v={y-2z)= AtMu’fAtB-AtB = AtM
Evaluating

Sl M) g
A, T lEHCOH-LER O

QI Q0
[~RE'R
n
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{3-25)

(J-26)
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gives

2T
Az
1
AL
[~
=
=
Pt

and

P 2 . 2
d (Ar,, 2 At)” + (A, £ At ) +
—7- f axp | - - 2”’ B &B_ dat,  (3-27)

20

p!

6 127)
which is precissly the same &3 equation (J-20).

Continuing with the solution of squation (J-20}, when the exponeont is sxpanded and
collected, it can be written in the form

e e} ey ea”
2% [ T J“‘B 2

from the integral tables which state

A "7 |B%- AC]
- (Ax“ + Bx +C)ldx =ai— S J-28
_fmexp[<x x C)Jx.vAexp el (J-28)
Substituting
2 2 2
f(as AtM) = 1 L exp [-—-——-———(NzN ) AtM) .3, AtN * AtM ] 1 _
b\ em> 2\ 3/20% act 24 20° 3/20°
{J-29)
when the coefficient and exponent are simplitied
2/3(At 2 + At 2 - At At |
/3(Aty~ + Aty - Atylhy
f(AtN, ALM) = ——— - = (J-30)
nzazﬁ 20" :

and using the standard deviation per pair of stations, as noted in Aopendix E, .g.,

0? -2/ (3-31)

. [ 2/3(AtN2 + Ath - AtNAtM)]
P13 U

which is the formula discussed in the main text.

f(Aty, Aty) = (J-32)

U
X
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It is interesting to note the direct compariscr “etween this resuit and the result
of Gaussian noise adder circuits. I we have three Gaussian noise inputs, x, y, z
with standard deviation 0 for sach, and use an adder (or subtracter) circuit element
for x, y and z, the situsticn symbolically looks iike

/\v ¢—_‘"
__'

The density function for this condition, given in numerous texts, is

. 9 )
f(u,v) = 5 =2n 4V ] (3-33)
v mﬁxJ w’ [ﬂ-MJ 3

whare p iz the correlation cosfficient obtained from

x MV
& %%
However
WeG-RE-D -y -T-RE
w = y2
and
;2 =f+3° = & /
hence '

3|
"
Y

It car aiso be shown




y
Y20¥20

[ 10

p =
And, for this valus of p,

2,.2
‘(‘l, v) = ‘ﬁl'dz exp [- 2,‘3 L“_:_"_'_ﬂ.l

¢

which, again, s idertical to tke derived formula.




APPENDIX K

MODIF'CATION OF ELLIPTICAL TRANSFORMS FOR A DIVERGING,
OBLIQUE CCORDINATE SYSTEM

As stated (n the main text the true cocrdinate system about the pcint P is not a
gridwork of lines parallel to the LOP's at the assumed true point P. Rather, each
set of points m, n which sstisfy the error conditions 4t , Aty, lie on the hyperbolas
associated with At,,, Aty so that the angles between the m and n axas and the hyper-
bolae are right angles.

If we {see Figure K-1) also construct the intersections of +m, #u in the usual
msanner on lines parallel to the LOP'e, then these point. and the pointa deacribed
above, for example m’' and n', and the :ue point P all lie in a straight line. It is
then desired to determine the change or adjustment of the values, called R (or C) in
the text, into the values d and a. This is accomplished with engineering approxima-
tions in the foliowing manner.

In addition to Figure K-1, consider the following enlargements of the regiona
6_and b .
x y
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Geometry of the True Diverging Oblique Axis System

Figure K~1.

e
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Then by trigoncmetry
gina =8 gtap=2
c c
sin A _g
sinB b
and

._._z—- = —‘—-— —-xn-t ¥ c
*sinA  8in 93
h

h __=a -
sinD siap’sinB 8in9%0
sinE _ gsinx
sinD hsinp

a then exercize the engineering approximation that

slnxa
siny
and
sinE _ K
sinD h
Further
ginA > A, sinB = B, ste.
Therefore
A_EE_ &
B KD h
A_E
B D
or
A+B~E+D
B D
B_D
N
x ¥y
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K-2) -

(E-3)

(K-4)

(K-~5)

(K-6)

X-T)

(K-8)

(K-9)




Fuvrther, by thoe law of rines,

®
23
b
®”
B
t4

[:\}
|
®io Sl
()
5
»

®lo

but by squation (K-7)

D_B
E A
D<E _B+A
E A
E_D+E
A B+A
Theredore
/a_D+E_e
g °B+A"9§

Likewise in ths other two triangles involving 8, and the other 8y, we have

B
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(K-10)

{K-11)

(K-12)

(K-13)

(K-14)




bowever, as before,

Finally

D'+E' =8,
A'+B =0,
..
c B b

y

To convert this to other system parameters considor

Gy+x+u+¢' = 380[¢' = 180 - 6 ]

By = 180+6x- (x + 1)

£ =x+p+0_-180
zZ X

Aem

T= 90 - x

Mn

— =90k
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(E-15)

(K-18)

(K-17)

{K-18)

(K-18}

(X-20)

(K-21)

(K-22)

(K=28)

(B--24)

(K-25)




Giving

A+ AB
m _m n
= 180 - (x % )

AE+M
= (x+p)-180

Equations (X-14), (K-20) and (X-21) can he rewritten
:! 6, +—= +—52

wio
'l
Ul
- >

» o

and (witk 6, given in radians)

and 80 forth,
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(K-27)

(%i~28)

(K-30)

(X~31)




11,

12'

13'

14,

15'
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configurations. Examples are provided and applications are discussed.
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